

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6579699/publications.pdf Version: 2024-02-01

YU NIE

#	Article	IF	CITATIONS
1	Filamin C in cardiomyopathy: from physiological roles to DNA variants. Heart Failure Reviews, 2022, 27, 1373-1385.	1.7	20
2	Proteogenomics Integrating Reveal a Complex Network, Alternative Splicing, Hub Genes Regulating Heart Maturation. Genes, 2022, 13, 250.	1.0	1
3	Letter by Feng and Nie Regarding Article, "Myeloid-Derived Growth Factor Protects Against Pressure Overload-Induced Heart Failure― Circulation, 2022, 145, e768-e769.	1.6	0
4	CRISPR-CasRx knock-in mice for RNA degradation. Science China Life Sciences, 2022, 65, 2248-2256.	2.3	9
5	Methods of mouse cardiomyocyte isolation from postnatal heart. Journal of Molecular and Cellular Cardiology, 2022, 168, 35-43.	0.9	8
6	Extracellular matrix–based biomaterials for cardiac regeneration and repair. Heart Failure Reviews, 2021, 26, 1231-1248.	1.7	48
7	Transplantation of murine neonatal cardiac macrophage improves adult cardiac repair. Cellular and Molecular Immunology, 2021, 18, 492-494.	4.8	25
8	Elevated IgE promotes cardiac fibrosis by suppressing miR-486a-5p. Theranostics, 2021, 11, 7600-7615.	4.6	13
9	Myocarditis and heart function impairment occur in neonatal mice following in utero exposure to the Zika virus. Journal of Cellular and Molecular Medicine, 2021, 25, 2730-2733.	1.6	3
10	Transplantation of Neonatal Mouse Cardiac Macrophages into Adult Mice. Journal of Visualized Experiments, 2021, , .	0.2	1
11	Response by Li et al to Letter Regarding Article, "gp130 Controls Cardiomyocyte Proliferation and Heart Regeneration― Circulation, 2021, 143, e813-e814.	1.6	0
12	Establishment and characterization of an immortalized epicardial cell line. Journal of Cellular and Molecular Medicine, 2021, 25, 6070-6081.	1.6	3
13	Mild hypothermia in rat with acute myocardial ischaemiaâ€reperfusion injury complicating severe sepsis. Journal of Cellular and Molecular Medicine, 2021, 25, 6448.	1.6	3
14	LncRNA LncHrt preserves cardiac metabolic homeostasis and heart function by modulating the LKB1-AMPK signaling pathway. Basic Research in Cardiology, 2021, 116, 48.	2.5	27
15	Sult2b1 deficiency exacerbates ischemic stroke by promoting pro-inflammatory macrophage polarization in mice. Theranostics, 2021, 11, 10074-10090.	4.6	9
16	Arterial Sca1+ Vascular Stem Cells Generate De Novo Smooth Muscle for Artery Repair and Regeneration. Cell Stem Cell, 2020, 26, 81-96.e4.	5.2	98
17	Zika virus induces myocardial immune response and myocarditis in mice. Journal of Molecular and Cellular Cardiology, 2020, 148, 103-105.	0.9	10
18	Mydgf promotes Cardiomyocyte proliferation and Neonatal Heart regeneration. Theranostics, 2020, 10, 9100-9112.	4.6	50

Yu Nie

#	Article	IF	CITATIONS
19	Optimized Langendorff perfusion system for cardiomyocyte isolation in adult mouse heart. Journal of Cellular and Molecular Medicine, 2020, 24, 14619-14625.	1.6	16
20	The long noncoding RNA NR_045363 involves cardiomyocyte apoptosis and cardiac repair via p53 signal pathway. Cell Biology International, 2020, 44, 1957-1965.	1.4	5
21	Cardiac Cavity Tracking: CACCT: An Automated Tool of Detecting Complicated Cardiac Malformations in Mouse Models (Adv. Sci. 8/2020). Advanced Science, 2020, 7, 2070042.	5.6	0
22	Hydrogen Sulfide Promotes Cardiomyocyte Proliferation and Heart Regeneration <i>via</i> ROS Scavenging. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-11.	1.9	18
23	gp130 Controls Cardiomyocyte Proliferation and Heart Regeneration. Circulation, 2020, 142, 967-982.	1.6	86
24	CACCT: An Automated Tool of Detecting Complicated Cardiac Malformations in Mouse Models. Advanced Science, 2020, 7, 1903592.	5.6	5
25	A genetic system for tissue-specific inhibition of cell proliferation. Development (Cambridge), 2020, 147, .	1.2	10
26	Achieving stable myocardial regeneration after apical resection in neonatal mice. Journal of Cellular and Molecular Medicine, 2020, 24, 6500-6504.	1.6	8
27	Reassessment of c-Kit ⁺ Cells for Cardiomyocyte Contribution in Adult Heart. Circulation, 2019, 140, 164-166.	1.6	40
28	PDGFR-Î ² Signaling Regulates Cardiomyocyte Proliferation and Myocardial Regeneration. Cell Reports, 2019, 28, 966-978.e4.	2.9	44
29	Recent advances in myocardial regeneration strategy. Journal of International Medical Research, 2019, 47, 5453-5464.	0.4	5
30	Minor alleles of genetic variants in second heart field increase the risk of hypoplastic right heart syndrome. Journal of Genetics, 2019, 98, 1.	0.4	3
31	Proteomic profiling of key transcription factors in the process of neonatal mouse cardiac regeneration capacity loss. Cell Biology International, 2019, 43, 1435-1442.	1.4	3
32	Intronic Polymorphisms in Gene of Second Heart Field as Risk Factors for Human Congenital Heart Disease in a Chinese Population. DNA and Cell Biology, 2019, 38, 521-531.	0.9	5
33	Lung regeneration by multipotent stem cells residing at the bronchioalveolar-duct junction. Nature Genetics, 2019, 51, 728-738.	9.4	231
34	A long noncoding RNA NR_045363 controls cardiomyocyte proliferation and cardiac repair. Journal of Molecular and Cellular Cardiology, 2019, 127, 105-114.	0.9	47
35	Histopathologic features of alcoholic cardiomyopathy compared with idiopathic dilated cardiomyopathy. Medicine (United States), 2018, 97, e12259.	0.4	15
36	Fate Mapping of Sca1 + Cardiac Progenitor Cells in the Adult Mouse Heart. Circulation, 2018, 138, 2967-2969.	1.6	42

Yu Nie

#	Article	IF	CITATIONS
37	Achieving highly water-soluble and luminescent gold nanoclusters modified by β–cyclodextrin as multifunctional nanoprobe for biological applications. Dyes and Pigments, 2018, 157, 359-368.	2.0	18
38	Genome and epigenome analysis of monozygotic twins discordant for congenital heart disease. BMC Genomics, 2018, 19, 428.	1.2	43
39	Non-cardiomyocytes in Heart Regeneration. Current Drug Targets, 2018, 19, 1077-1086.	1.0	9
40	Identification of a hybrid myocardial zone in the mammalian heart after birth. Nature Communications, 2017, 8, 87.	5.8	67
41	Enhancing the precision of genetic lineage tracing using dual recombinases. Nature Medicine, 2017, 23, 1488-1498.	15.2	188
42	Preexisting endothelial cells mediate cardiac neovascularization after injury. Journal of Clinical Investigation, 2017, 127, 2968-2981.	3.9	146
43	Mfsd2a+ hepatocytes repopulate the liver during injury and regeneration. Nature Communications, 2016, 7, 13369.	5.8	87
44	Genetic lineage tracing identifies in situ Kit-expressing cardiomyocytes. Cell Research, 2016, 26, 119-130.	5.7	122
45	GATA4 regulates Fgf16 to promote heart repair after injury. Development (Cambridge), 2016, 143, 936-49.	1.2	79
46	Endocardium Contributes to Cardiac Fat. Circulation Research, 2016, 118, 254-265.	2.0	42
47	The Human Myotrophin Variant Attenuates MicroRNA-Let-7 Binding Ability but Not Risk of Left Ventricular Hypertrophy in Human Essential Hypertension. PLoS ONE, 2015, 10, e0135526.	1.1	3
48	Acute inflammation stimulates a regenerative response in the neonatal mouse heart. Cell Research, 2015, 25, 1137-1151.	5.7	123
49	A Polymorphism in <i>Hepatocyte Nuclear Factor 1 Alpha,</i> rs7310409, Is Associated with Left Main Coronary Artery Disease. Biochemistry Research International, 2014, 2014, 1-7.	1.5	8
50	Multi-Investigator Letter on Reproducibility of Neonatal Heart Regeneration following Apical Resection. Stem Cell Reports, 2014, 3, 690.	2.3	1
51	Polymorphisms of VEGF, TGFβ1, TGFβR2 and conotruncal heart defects in a Chinese population. Molecular Biology Reports, 2014, 41, 1763-1770.	1.0	14
52	Multi-Investigator Letter on Reproducibility of Neonatal Heart Regeneration following Apical Resection. Stem Cell Reports, 2014, 3, 1.	2.3	65
53	Cardiomyocyte cytokinesis score: a potential method for cardiomyocyte proliferation. Cell Biology International, 2014, 38, 1032-1040.	1.4	3
54	Circulating miRNAs reflect early myocardial injury and recovery after heart transplantation. Journal of Cardiothoracic Surgery, 2013, 8, 165.	0.4	41

Yu Nie

#	Article	IF	CITATIONS
55	Reciprocal regulation of miR-23a and lysophosphatidic acid receptor signaling in cardiomyocyte hypertrophy. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 1386-1394.	1.2	20
56	MicroRNA profiling during rat ventricular maturation: A role for miRâ€29a in regulating cardiomyocyte cell cycle reâ€entry. FEBS Letters, 2013, 587, 1548-1555.	1.3	58
57	Methylenetetrahydrofolate reductase C677T and reduced folate carrier 80 G>A polymorphisms are associated with an increased risk of conotruncal heart defects. Clinical Chemistry and Laboratory Medicine, 2012, 50, 1455-61.	1.4	25
58	Micro <scp>RNA</scp> â€24 regulates cardiac fibrosis after myocardial infarction. Journal of Cellular and Molecular Medicine, 2012, 16, 2150-2160.	1.6	241
59	MicroRNA-193 Pro-Proliferation Effects for Bone Mesenchymal Stem Cells After Low-Level Laser Irradiation Treatment Through Inhibitor of Growth Family, Member 5. Stem Cells and Development, 2012, 21, 2508-2519.	1.1	68
60	Developmental changes in lysophospholipid receptor expression in rodent heart from near-term fetus to adult. Molecular Biology Reports, 2012, 39, 9075-9084.	1.0	10
61	Methylenetetrahydrofolate reductase C677T polymorphism and congenital heart disease: a meta-analysis. Clinical Chemistry and Laboratory Medicine, 2011, 49, 2101-8.	1.4	21
62	Identification of MicroRNAs Involved in Hypoxia- and Serum Deprivation-Induced Apoptosis in Mesenchymal Stem Cells. International Journal of Biological Sciences, 2011, 7, 762-768.	2.6	96