Matt Sponheimer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6579287/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TOOTHFIR: Presenting a dataset and a preliminary meta-analysis of Fourier Transform Infra-red Spectroscopy indices from archaeological and palaeontological tooth enamel. Quaternary International, 2022, , .	0.7	2
2	Problems with Paranthropus. Quaternary International, 2022, , .	0.7	4
3	Intrataxonomic trends in herbivore enamel δ13C are decoupled from ecosystem woody cover. Nature Ecology and Evolution, 2021, 5, 995-1002.	3.4	12
4	A 41,500Âyear-old decorated ivory pendant from Stajnia Cave (Poland). Scientific Reports, 2021, 11, 22078.	1.6	12
5	Stable carbon isotope and molar microwear variability of South African australopiths in relation to paleohabitats and taxonomy. , 2020, , 187-223.		3
6	Isotopic evidence for the timing of the dietary shift toward C ₄ foods in eastern African <i>Paranthropus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21978-21984.	3.3	28
7	Dietary trends in herbivores from the Shungura Formation, southwestern Ethiopia. Proceedings of the United States of America, 2020, 117, 21921-21927.	3.3	22
8	â€~Remote' behavioural ecology: do megaherbivores consume vegetation in proportion to its presence in the landscape?. PeerJ, 2020, 8, e8622.	0.9	5
9	Seasonal and habitat effects on the nutritional properties of savanna vegetation: Potential implications for early hominin dietary ecology. Journal of Human Evolution, 2019, 133, 99-107.	1.3	10
10	Direct radiocarbon dates of mid Upper Palaeolithic human remains from DolnÃ-VÄ›stonice II and Pavlov I, Czech Republic. Journal of Archaeological Science: Reports, 2019, 27, 102000.	0.2	7
11	Saving Old Bones: a non-destructive method for bone collagen prescreening. Scientific Reports, 2019, 9, 13928.	1.6	38
12	Dietary Evolution: The Panda Paradox. Current Biology, 2019, 29, R417-R419.	1.8	6
13	Stable isotope data from bonobo (<i>Pan paniscus</i>) faecal samples from the Lomako Forest Reserve, Democratic Republic of the Congo. African Journal of Ecology, 2019, 57, 437-442.	0.4	6
14	Vervet Monkeys (Chlorocebus pygerthrus), Chimpanzees (Pan troglodytes), and Humans (Homo) Tj ETQq0 0 0 r	gBT /Overl	ock 10 Tf 50
15	The ecomorphology of southern African rodent incisors: Potential applications to the hominin fossil record. PLoS ONE, 2019, 14, e0205476.	1.1	4
16	Fossil Primates from Flooded Habitats. , 2019, , 10-14.		0

17	Influences on plant nutritional variation and their potential effects on hominin diet selection. Review of Palaeobotany and Palynology, 2019, 261, 18-30.	0.8	11

18Grass leaves as potential hominin dietary resources. Journal of Human Evolution, 2018, 117, 44-52.1.321

#	Article	IF	CITATIONS
19	Evidence for differences in activity between socioeconomic groups at <scp>K</scp> ulubnarti, <scp>N</scp> ubia (550–800 <scp>CE</scp>), from osseous modifications of the proximal femur. International Journal of Osteoarchaeology, 2018, 28, 735-744.	0.6	2
20	Stable carbon isotope ecology of small mammals from the Sterkfontein Valley: Implications for habitat reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485, 57-67.	1.0	14
21	Within-Population Isotopic Niche Variability in Savanna Mammals: Disparity between Carnivores and Herbivores. Frontiers in Ecology and Evolution, 2016, 4, .	1.1	20
22	Advances in primate stable isotope ecology—Achievements and future prospects. American Journal of Primatology, 2016, 78, 995-1003.	0.8	13
23	Conservation: New Potential for Stable Isotope Analysis?. Developments in Primatology, 2016, , 399-414.	0.7	2
24	Small mammal insectivore stable carbon isotope compositions as habitat proxies in a South African savanna ecosystem. Journal of Archaeological Science: Reports, 2016, 8, 335-345.	0.2	8
25	Dietary flexibility of Australopithecus afarensis in the face of paleoecological change during the middle Pliocene: Faunal evidence from Hadar, Ethiopia. Journal of Human Evolution, 2016, 99, 93-106.	1.3	32
26	The stable isotope ecology of <i>Pan</i> in Uganda and beyond. American Journal of Primatology, 2016, 78, 1070-1085.	0.8	51
27	Stable isotope evidence for trophic niche partitioning in a South African savanna rodent community. Environmental Epigenetics, 2015, 61, 397-411.	0.9	26
28	Stable isotopes (carbon, nitrogen, sulfur), diet, and anthropometry in urban Colombian women: Investigating socioeconomic differences. American Journal of Human Biology, 2015, 27, 207-218.	0.8	18
29	Contribution of Stable Light Isotopes to Paleoenvironmental Reconstruction. , 2015, , 441-464.		1
30	Hominin Paleodiets: The Contribution of Stable Isotopes. , 2015, , 671-701.		2
31	Using the Stable Carbon and Nitrogen Isotope Compositions of Vervet Monkeys (Chlorocebus) Tj ETQq1 1 0.784	4314 rgBT 1.1	Öyerlock 10
32	Impacts of Plant-Based Foods in Ancestral Hominin Diets on the Metabolism and Function of Gut Microbiota <i>In Vitro</i> . MBio, 2014, 5, e00853-14.	1.8	27
33	Intraâ€ŧooth stable isotope analysis of dentine: A step toward addressing selective mortality in the reconstruction of life history in the archaeological record. American Journal of Physical Anthropology, 2014, 155, 281-293.	2.1	85
34	Strontium isotope analysis of curved tooth enamel surfaces by laser-ablation multi-collector ICP-MS. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 416, 142-149.	1.0	26
35	Plant stable isotope composition across habitat gradients in a semiâ€arid savanna: implications for environmental reconstruction. Journal of Quaternary Science, 2013, 28, 301-310.	1.1	24
36	Diet of <i>Australopithecus afarensis</i> from the Pliocene Hadar Formation, Ethiopia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10495-10500.	3.3	97

#	Article	IF	CITATIONS
37	Hominin Ecology from Hard-Tissue Biogeochemistry. , 2013, , 281-324.		14
38	Stable isotope turnover and variability in tail hairs of captive and free-ranging African elephants (<i>Loxodonta africana</i>) reveal dietary niche differences within populations. Canadian Journal of Zoology, 2013, 91, 124-134.	0.4	20
39	Some Ruminations on Australopith Diets. Vertebrate Paleobiology and Paleoanthropology, 2013, , 225-233.	0.1	6
40	Isotopic evidence of early hominin diets. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10513-10518.	3.3	225
41	Reply to Fontes-Villalba et al.: On a reluctance to conjecture about animal food consumption. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4056.	3.3	3
42	A Brief Update on Developments in Early Hominin Biogeochemistry. ACS Symposium Series, 2013, , 295-307.	0.5	0
43	Hominin Paleodiets: The Contribution of Stable Isotopes. , 2013, , 1-27.		0
44	Contribution of Stable Light Isotopes to Paleoenvironmental Reconstruction. , 2013, , 1-22.		0
45	Stable isotope series from elephant ivory reveal lifetime histories of a true dietary generalist. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2433-2441.	1.2	39
46	Isotopic evidence for an early shift to C ₄ resources by Pliocene hominins in Chad. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20369-20372.	3.3	106
47	The confounding effects of source isotopic heterogeneity on consumer–diet and tissue–tissue stable isotope relationships. Oecologia, 2012, 169, 939-953.	0.9	35
48	Stable Isotope Analysis in Primatology: A Critical Review. American Journal of Primatology, 2012, 74, 969-989.	0.8	42
49	Nanoindentation of lemur enamel: An ecological investigation of mechanical property variations within and between sympatric species. American Journal of Physical Anthropology, 2012, 148, 178-190.	2.1	13
50	Dental microwear and stable isotopes inform the paleoecology of extinct hominins. American Journal of Physical Anthropology, 2012, 148, 285-317.	2.1	112
51	The diet of Australopithecus sediba. Nature, 2012, 487, 90-93.	13.7	165
52	Tracking the fate of digesta 13C and 15N compositions along the ruminant gastrointestinal tract: Does digestion influence the relationship between diet and faeces?. European Journal of Wildlife Research, 2012, 58, 303-313.	0.7	22
53	Diet of <i>Paranthropus boisei</i> in the early Pleistocene of East Africa. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9337-9341.	3.3	263
54	Strontium isotope evidence for landscape use by early hominins. Nature, 2011, 474, 76-78.	13.7	175

#	Article	IF	CITATIONS
55	Landscape-scale feeding patterns of African elephant inferred from carbon isotope analysis of feces. Oecologia, 2011, 165, 89-99.	0.9	52
56	When animals are not quite what they eat: diet digestibility influences ¹³ C-incorporation rates and apparent discrimination in a mixed-feeding herbivore. Canadian Journal of Zoology, 2011, 89, 453-465.	0.4	45
5 7	The Diets of Early Hominins. Science, 2011, 334, 190-193.	6.0	211
58	Reply to Godfrey et al.: Outside the box. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E743-E743.	3.3	3
59	Craniofacial biomechanics and functional and dietary inferences in hominin paleontology. Journal of Human Evolution, 2010, 58, 293-308.	1.3	61
60	Strontium isotope ratios in fossil teeth from South Africa: assessing laser ablation MC-ICP-MS analysis and the extent of diagenesis. Journal of Archaeological Science, 2010, 37, 1437-1446.	1.2	65
61	Nanomechanical properties of modern and fossil bone. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 289, 25-32.	1.0	19
62	Stable isotopes in fossil hominin tooth enamel suggest a fundamental dietary shift in the Pliocene. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 3389-3396.	1.8	97
63	Using carbon isotopes to track dietary change in modern, historical, and ancient primates. American Journal of Physical Anthropology, 2009, 140, 661-670.	2.1	69
64	Stable isotope evidence for impala <i>Aepyceros melampus</i> diets at Akagera National Park, Rwanda. African Journal of Ecology, 2009, 47, 490-501.	0.4	14
65	Stable isotope evidence for nutritional stress, competition, and loss of functional habitat as factors limiting recovery of rare antelope in southern Africa. Journal of Arid Environments, 2009, 73, 449-457.	1.2	10
66	Increased Dietary Breadth in Early Hominin Evolution: Revisiting Arguments and Evidence with a Focus on Biogeochemical Contributions. Vertebrate Paleobiology and Paleoanthropology, 2009, , 229-240.	0.1	15
67	Biogeochemical Evidence for the Environments of Early Homo in South Africa. Vertebrate Paleobiology and Paleoanthropology, 2009, , 185-194.	0.1	6
68	What Insights Can Baboon Feeding Ecology Provide for Early Hominin Niche Differentiation?. International Journal of Primatology, 2008, 29, 757-772.	0.9	68
69	Strontium isotope ratios (⁸⁷ Sr/ ⁸⁶ Sr) of tooth enamel: a comparison of solution and laser ablation multicollector inductively coupled plasma mass spectrometry methods. Rapid Communications in Mass Spectrometry, 2008, 22, 3187-3194.	0.7	110
70	Bulk and intraâ€ŧooth enamel stable isotopes of waterbuck <i>Kobus ellipsiprymnus</i> from Queen Elizabeth National Park, Uganda. African Journal of Ecology, 2008, 46, 697-701.	0.4	8
71	Indications of habitat association of Australopithecus robustus in the Bloubank Valley, South Africa. Journal of Human Evolution, 2008, 55, 1015-1030.	1.3	58
72	The Reaction Progress Variable and Isotope Turnover in Biological Systems. Journal of Nano Education (Print), 2007, , 163-171.	0.3	5

#	Article	IF	CITATIONS
73	Stable carbon isotope reconstruction of ungulate diet changes through the seasonal cycle. South African Journal of Wildlife Research, 2007, 37, 117-125.	1.4	35
74	Intraspecific variation in hair δ13C and δ15N values of ring-tailed lemurs (Lemur catta) with known individual histories, behavior, and feeding ecology. American Journal of Physical Anthropology, 2007, 133, 978-985.	2.1	73
75	Significance of diet type and diet quality for ecological diversity of African ungulates. Journal of Animal Ecology, 2007, 76, 526-537.	1.3	88
76	Diets of savanna ungulates from stable carbon isotope composition of faeces. Journal of Zoology, 2007, 273, 21-29.	0.8	156
77	Tracking changing environments using stable carbon isotopes in fossil tooth enamel: an example from the South African hominin sites. Journal of Human Evolution, 2007, 53, 595-601.	1.3	84
78	Nutritional content of savanna plant foods: implications for browser/grazer models of ungulate diversification. European Journal of Wildlife Research, 2007, 53, 100-111.	0.7	82
79	Stable isotope characterization of mammalian predator–prey relationships in a South African savanna. European Journal of Wildlife Research, 2007, 53, 161-170.	0.7	86
80	18 Hominin Paleodiets: The Contribution of Stable Isotopes. , 2007, , 555-585.		11
81	9 Contribution of Stable Light Isotopes to Paleoenvironmental Reconstruction. , 2007, , 289-310.		3
82	The Reaction Progress Variable and Isotope Turnover in Biological Systems. , 2007, , 163-171.		4
83	Stable isotope characterisation of mammalian predator–prey relationships in a South African savanna. European Journal of Wildlife Research, 2007, 53, 161.	0.7	5
84	ELEPHANT (LOXODONTA AFRICANA) DIETS IN KRUGER NATIONAL PARK, SOUTH AFRICA: SPATIAL AND LANDSCAPE DIFFERENCES. Journal of Mammalogy, 2006, 87, 27-34.	0.6	106
85	Enamel diagenesis at South African Australopith sites: Implications for paleoecological reconstruction with trace elements. Geochimica Et Cosmochimica Acta, 2006, 70, 1644-1654.	1.6	106
86	Microwear evidence for Plio–Pleistocene bovid diets from Makapansgat Limeworks Cave, South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 241, 301-319.	1.0	71
87	Turnover of stable carbon isotopes in the muscle, liver, and breath CO2 of alpacas (Lama pacos). Rapid Communications in Mass Spectrometry, 2006, 20, 1395-1399.	0.7	90
88	Digestibility and nitrogen retention in llamas and goats fed alfalfa, C3 grass, and C4 grass hays. Small Ruminant Research, 2006, 64, 162-168.	0.6	17
89	Do "savanna―chimpanzees consume C4 resources?. Journal of Human Evolution, 2006, 51, 128-133.	1.3	150
90	Inter- and intrahabitat dietary variability of chacma baboons (Papio ursinus) in South African savannas based on fecal δ13C, δ15N, and %N. American Journal of Physical Anthropology, 2006, 129, 204-214.	2.1	120

#	Article	IF	CITATIONS
91	Contributions of biogeochemistry to understanding hominin dietary ecology. American Journal of Physical Anthropology, 2006, 131, 131-148.	2.1	110
92	Isotopic Evidence for Dietary Variability in the Early Hominin Paranthropus robustus. Science, 2006, 314, 980-982.	6.0	206
93	Sr/Ca and early hominin diets revisited: new data from modern and fossil tooth enamel. Journal of Human Evolution, 2005, 48, 147-156.	1.3	100
94	Hominins, sedges, and termites: new carbon isotope data from the Sterkfontein valley and Kruger National Park. Journal of Human Evolution, 2005, 48, 301-312.	1.3	178
95	The effect of dietary protein quality on nitrogen isotope discrimination in mammals and birds. Oecologia, 2005, 144, 534-540.	0.9	358
96	Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. Journal of Archaeological Science, 2005, 32, 1459-1470.	1.2	484
97	Taxonomic, anatomical, and spatio-temporal variations in the stable carbon and nitrogen isotopic compositions of plants from an African savanna. Journal of Archaeological Science, 2005, 32, 1757-1772.	1.2	160
98	Turnover of carbon isotopes in tail hair and breath CO 2 of horses fed an isotopically varied diet. Oecologia, 2004, 139, 11-22.	0.9	222
99	An Examination of Triassic Cynodont Tooth Enamel Chemistry Using Fourier Transform Infrared Spectroscopy. Calcified Tissue International, 2004, 74, 162-169.	1.5	16
100	Digestion and passage rates of grass hays by llamas, alpacas, goats, rabbits, and horses. Small Ruminant Research, 2003, 48, 149-154.	0.6	67
101	Differential resource utilization by extant great apes and australopithecines: towards solving the C4 conundrum. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2003, 136, 27-34.	0.8	48
102	Sulphur isotopes in palaeodietary studies: a review and results from a controlled feeding experiment. International Journal of Osteoarchaeology, 2003, 13, 37-45.	0.6	216
103	Nitrogen isotopes in mammalian herbivores: hair ?15N values from a controlled feeding study. International Journal of Osteoarchaeology, 2003, 13, 80-87.	0.6	321
104	What do stable isotopes tell us about hominid dietary and ecological niches in the pliocene?. International Journal of Osteoarchaeology, 2003, 13, 104-113.	0.6	63
105	An experimental study of carbon-isotope fractionation between diet, hair, and feces of mammalian herbivores. Canadian Journal of Zoology, 2003, 81, 871-876.	0.4	237
106	Three case studies used to reassess the reliability of fossil bone and enamel isotope signals for paleodietary studies. Journal of Anthropological Archaeology, 2003, 22, 208-216.	0.7	261
107	An experimental study of nitrogen flux in llamas: is 14N preferentially excreted?. Journal of Archaeological Science, 2003, 30, 1649-1655.	1.2	109
108	DIETS OF SOUTHERN AFRICAN BOVIDAE: STABLE ISOTOPE EVIDENCE. Journal of Mammalogy, 2003, 84, 471-479.	0.6	218

#	Article	IF	CITATIONS
109	The oxygen isotope composition of mammalian enamel carbonate from Morea Estate, South Africa. Oecologia, 2001, 126, 153-157.	0.9	111
110	Combining isotopic and ecomorphological data to refine bovid paleodietary reconstruction: a case study from the Makapansgat Limeworks hominin locality. Journal of Human Evolution, 1999, 36, 705-718.	1.3	129
111	Isotopic Evidence for the Diet of an Early Hominid, Australopithecus africanus. Science, 1999, 283, 368-370.	6.0	296
112	Alteration of Enamel Carbonate Environments during Fossilization. Journal of Archaeological Science, 1999, 26, 143-150.	1.2	167
113	Oxygen Isotopes in Enamel Carbonate and their Ecological Significance. Journal of Archaeological Science, 1999, 26, 723-728.	1.2	250
114	Functional differentiation of African grazing ruminants: an example of specialized adaptations to very small changes in diet. Biological Journal of the Linnean Society, 0, 94, 755-764.	0.7	49
115	Animal palaeocommunity variability and habitat preference of the robust australopiths in South Africa. , 0, , 451-470.		0
116	Tooth Enamel Biogeochemistry and Early Hominin Diets. , 0, , .		0