Atefeh Solouk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6578802/publications.pdf

Version: 2024-02-01

71 papers 2,452 citations

28 h-index 214527 47 g-index

72 all docs 72 docs citations

72 times ranked 3525 citing authors

#	Article	IF	Citations
1	A review of key challenges of electrospun scaffolds for tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 715-738.	1.3	395
2	Alginate Based Scaffolds for Cartilage Tissue Engineering: A Review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 230-247.	1.8	135
3	Electrospun nanofibers comprising of silk fibroin/gelatin for drug delivery applications: Thyme essential oil and doxycycline monohydrate release study. Journal of Biomedical Materials Research - Part A, 2018, 106, 1092-1103.	2.1	113
4	Electroconductive polyurethane/graphene nanocomposite for biomedical applications. Composites Part B: Engineering, 2019, 168, 421-431.	5.9	87
5	Personalized development of human organs using 3D printing technology. Medical Hypotheses, 2016, 87, 30-33.	0.8	77
6	Multilayer nanofibrous patch comprising chamomile loaded carboxyethyl chitosan/poly(vinyl) Tj ETQq0 0 0 rgBT / Macromolecules, 2020, 147, 547-559.	/Overlock 3.6	10 Tf 50 547 ¹ 74
7	Enhanced cellular response elicited by addition of amniotic fluid to alginate hydrogel-electrospun silk fibroin fibers for potential wound dressing application. Colloids and Surfaces B: Biointerfaces, 2018, 172, 82-89.	2.5	72
8	Biomimetic modification of polyurethane-based nanofibrous vascular grafts: A promising approach towards stable endothelial lining. Materials Science and Engineering C, 2017, 80, 213-221.	3.8	70
9	Differentiation of Wharton's Jelly-Derived Mesenchymal Stem Cells into Motor Neuron-Like Cells on Three-Dimensional Collagen-Grafted Nanofibers. Molecular Neurobiology, 2016, 53, 2397-2408.	1.9	64
10	Nanotubes in nanofibers: Antibacterial multilayered polylactic acid/halloysite/gentamicin membranes for bone regeneration application. Applied Clay Science, 2018, 160, 95-105.	2.6	64
11	Polyurethane Coatings Derived from 1,2,3-Triazole-Functionalized Soybean Oil-Based Polyols: Studying their Physical, Mechanical, Thermal, and Biological Properties. Macromolecules, 2013, 46, 7777-7788.	2.2	63
12	Injectable in situ forming kartogenin-loaded chitosan hydrogel with tunable rheological properties for cartilage tissue engineering. Colloids and Surfaces B: Biointerfaces, 2020, 192, 111059.	2.5	57
13	Safely Dissolvable and Healable Active Packaging Films Based on Alginate and Pectin. Polymers, 2019, 11, 1594.	2.0	56
14	Cationic gemini surfactant properties, its potential as a promising bioapplication candidate, and strategies for improving its biocompatibility: A review. Advances in Colloid and Interface Science, 2022, 299, 102581.	7.0	55
15	Biomimetic modified clinical-grade POSS-PCU nanocomposite polymer for bypass graft applications: A preliminary assessment of endothelial cell adhesion and haemocompatibility. Materials Science and Engineering C, 2015, 46, 400-408.	3.8	49
16	Application of plasma surface modification techniques to improve hemocompatibility of vascular grafts: A review. Biotechnology and Applied Biochemistry, 2011, 58, 311-327.	1.4	45
17	Studying the Potential Application of Electrospun Polyethylene Terephthalate/Graphene Oxide Nanofibers as Electroconductive Cardiac Patch. Macromolecular Materials and Engineering, 2019, 304, 1900187.	1.7	44
18	Electrospun polyurethane/carbon nanotube composites with different amounts of carbon nanotubes and almost the same fiber diameter for biomedical applications. Materials Science and Engineering C, 2021, 118, 111403.	3.8	41

#	Article	IF	CITATIONS
19	Polyvinyl alcohol/soy protein isolate nanofibrous patch for wound-healing applications. Progress in Biomaterials, 2019, 8, 185-196.	1.8	40
20	Surface modification of POSSâ€nanocomposite biomaterials using reactive oxygen plasma treatment for cardiovascular surgical implant applications. Biotechnology and Applied Biochemistry, 2011, 58, 147-161.	1.4	39
21	Crosslinking strategies for silk fibroin hydrogels: promising biomedical materials. Biomedical Materials (Bristol), 2021, 16, 022004.	1.7	37
22	Magnetic responsive of paclitaxel delivery system based on SPION and palmitoyl chitosan. Journal of Magnetism and Magnetic Materials, 2017, 421, 316-325.	1.0	35
23	Surface engineering of titanium-based implants using electrospraying and dip coating methods. Materials Science and Engineering C, 2019, 99, 620-630.	3.8	35
24	Silk fibroin hydrogel/dexamethasone sodium phosphate loaded chitosan nanoparticles as a potential drug delivery system. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111892.	2.5	34
25	Electrospun silk-based nanofibrous scaffolds: fiber diameter and oxygen transfer. Progress in Biomaterials, 2016, 5, 71-80.	1.8	33
26	Electrospun polyethylene terephthalate (PET) nanofibrous conduit for biomedical application. Polymers for Advanced Technologies, 2020, 31, 284-296.	1.6	32
27	Electrospun PET/PCL small diameter nanofibrous conduit for biomedical application. Materials Science and Engineering C, 2020, 110, 110692.	3 . 8	31
28	Injectable drug loaded gelatin based scaffolds as minimally invasive approach for drug delivery system: CNC/PAMAM nanoparticles. European Polymer Journal, 2020, 139, 109992.	2.6	29
29	Preparation and characterization of a composite biomaterial including starch micro/nano particles loaded chitosan gel. Carbohydrate Polymers, 2017, 174, 633-645.	5.1	26
30	Development of chitosan membrane using non-toxic crosslinkers for potential wound dressing applications. Polymer Bulletin, 2021, 78, 4919-4929.	1.7	26
31	Effects of Hydrostatic Pressure on Biosynthetic Activity during Chondrogenic Differentiation of MSCs in Hybrid Scaffolds. International Journal of Artificial Organs, 2014, 37, 142-148.	0.7	25
32	PLLA scaffolds surface-engineered via poly (propylene imine) dendrimers for improvement on its biocompatibility/controlled pH biodegradability. Applied Surface Science, 2017, 394, 446-456.	3.1	25
33	Injectable and reversible preformed cryogels based on chemically crosslinked gelatin methacrylate (GelMA) and physically crosslinked hyaluronic acid (HA) for soft tissue engineering. Colloids and Surfaces B: Biointerfaces, 2021, 203, 111725.	2.5	25
34	Collagenâ€immobilized patch for repairing small tympanic membrane perforations: ⟨i⟩In vitro⟨/i⟩ and ⟨i⟩in vivo⟨/i⟩ assays. Journal of Biomedical Materials Research - Part A, 2012, 100A, 549-553.	2.1	24
35	Preparation of internally-crosslinked alginate microspheres: Optimization of process parameters and study of pH-responsive behaviors. Carbohydrate Polymers, 2021, 255, 117336.	5.1	23
36	Biomimetic double-sided polypropylene mesh modified by DOPA and ofloxacin loaded carboxyethyl chitosan/polyvinyl alcohol-polycaprolactone nanofibers for potential hernia repair applications. International Journal of Biological Macromolecules, 2020, 165, 902-917.	3 . 6	22

#	Article	IF	Citations
37	Thermoresponsive antimicrobial wound dressings via simultaneous thiol-ene polymerization and in situ generation of silver nanoparticles. RSC Advances, 2015, 5, 66024-66036.	1.7	21
38	Alginate nanoparticles as ocular drug delivery carriers. Journal of Drug Delivery Science and Technology, 2021, 66, 102889.	1.4	20
39	Modification of electrospun poly(<scp>L</scp> -lactic acid)/polyethylenimine nanofibrous scaffolds for biomedical application. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 247-257.	1.8	19
40	Silk-derived oxygen-generating electrospun patches for enhancing tissue regeneration: Investigation of calcium peroxide role and its effects on controlled oxygen delivery. Materialia, 2020, 14, 100877.	1.3	19
41	Fabrication of nanocomposite/nanofibrous functionally graded biomimetic scaffolds for osteochondral tissue regeneration. Journal of Biomedical Materials Research - Part A, 2021, 109, 1657-1669.	2.1	19
42	Amine-terminated dendritic polymers as promising nanoplatform for diagnostic and therapeutic agents' modification: A review. European Journal of Medicinal Chemistry, 2021, 221, 113572.	2.6	19
43	Synthesis, Characterization and Preliminary Investigation of Blood Compatibility of Novel Epoxy-modified Polyurethane Networks. Journal of Bioactive and Compatible Polymers, 2008, 23, 276-300.	0.8	18
44	Effect of crosslinking procedure on structural, thermal, and functional performances of cellulosic nanofibers: A comparison between chemical and photochemical crosslinking. Journal of Applied Polymer Science, 2016, 133, .	1.3	18
45	Injectable scaffold as minimally invasive technique for cartilage tissue engineering: in vitro and in vivo preliminary study. Progress in Biomaterials, 2014, 3, 143-151.	1.8	17
46	Improvement of the Electrospinnability of Silk Fibroin Solution by Atmospheric Pressure Plasma Treatment. Fibers and Polymers, 2019, 20, 1594-1600.	1,1	16
47	A dual functional chondro-inductive chitosan thermogel with high shear modulus and sustained drug release for cartilage tissue engineering. International Journal of Biological Macromolecules, 2022, 205, 638-650.	3.6	15
48	Engineered hemostatic bionanocomposite of poly(lactic acid) electrospun mat and aminoâ€modified halloysite for potential application in wound healing. Polymers for Advanced Technologies, 2021, 32, 3934-3947.	1.6	14
49	Osteochondral scaffolds based on electrospinning method: General review on new and emerging approaches. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 913-924.	1.8	12
50	Electrospun Fibroin/Graphene Oxide Nanocomposite Mats: an Optimization for Potential Wound Dressing Applications. Fibers and Polymers, 2020, 21, 480-488.	1.1	10
51	Novel decorated nanostructured lipid carrier for simultaneous active targeting of three anti-cancer agents. Life Sciences, 2021, 279, 119576.	2.0	10
52	Stem cells for tissue engineered vascular bypass grafts. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 999-1010.	1.9	9
53	Chitosan/gum tragacanth/PVA hybrid nanofibrous scaffold for tissue engineering applications. Bioinspired, Biomimetic and Nanobiomaterials, 2020, 9, 16-23.	0.7	9
54	Fabrications of small diameter compliance bypass conduit using electrospinning of clinical grade polyurethane. Vascular, 2019, 27, 636-647.	0.4	8

#	Article	IF	CITATIONS
55	Microstructure Manipulation of Polyurethaneâ€Based Macromolecular Scaffold for Tendon/Ligament Tissue Engineering. Macromolecular Materials and Engineering, 2022, 307, 2100584.	1.7	8
56	Preventing in-stent restenosis using lipoprotein (a), lipid and cholesterol adsorbent materials. Medical Hypotheses, 2015, 85, 986-988.	0.8	7
57	Biomimetic modification of silicone tubes using sodium nitrite–collagen immobilization accelerates endothelialization. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 1311-1321.	1.6	7
58	Tuning poly (L-lactic acid) scaffolds with poly(amidoamine) and poly(propylene imine) dendrimers: surface chemistry, biodegradation and biocompatibility. Journal of Macromolecular Science - Pure and Applied Chemistry, 2021, 58, 433-447.	1.2	7
59	The study of collagen immobilization on a novel nanocomposite to enhance cell adhesion and growth. Iranian Biomedical Journal, 2011, 15, 6-14.	0.4	7
60	Curcumin-Loaded Starch Micro/Nano Particles for Biomedical Application: The Effects of Preparation Parameters on Release Profile. Starch/Staerke, 2019, 71, 1800305.	1.1	6
61	Mathematical modeling of electrospinning process of silk fibroin/gelatin nanofibrous mat: Comparison of the accuracy of GMDH and RSM models. Journal of Industrial Textiles, 2021, 50, 1020-1039.	1.1	5
62	Effect of extraction method on properties of feather keratin grafted modified cotton nonwoven fabric for biomedical applications. Journal of Industrial Textiles, 2022, 51, 2558S-2575S.	1.1	5
63	A comparison of the material properties of natural and synthetic vascular walls. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71, 209-215.	1.5	4
64	Mussel-inspired polydopamine-coated silk fibroin as a promising biomaterial. Bioinspired, Biomimetic and Nanobiomaterials, 2020, 9, 147-154.	0.7	4
65	Hemostatic Electrospun Nanocomposite Containing Poly(lactic acid)/Halloysite Nanotube Functionalized by Poly(amidoamine) Dendrimer for Wound Healing Application: In Vitro and In Vivo Assays. Macromolecular Bioscience, 2022, 22, e2100313.	2.1	4
66	A novel substrate based on electrospun polyurethane nanofibers and electrosprayed polyvinyl alcohol microparticles for recombinant human erythropoietin delivery. Journal of Biomedical Materials Research - Part A, 2022, 110, 181-195.	2.1	3
67	Mechanical guidelines on the properties of human healthy arteries in the design and fabrication of vascular grafts: experimental tests and quasi-linear viscoelastic model. Acta of Bioengineering and Biomechanics, 2019, 21, 13-21.	0.2	2
68	An In Vitro Electric Field Exposure Device with Real-Time Cell Impedance Sensing. Iranian Journal of Science and Technology, Transaction A: Science, 2020, 44, 575-585.	0.7	1
69	Evaluation of physical properties of semi-thickness skin, acellular dermis and fascia as biologic skin substitutes. , 2016 , , .		0
70	Erythropoietin-Loaded Nanofibrous Patch for Regeneration of Infarcted Myocardium., 2017,,.		0
71	lonic conductive nanocomposite based on poly(l-lactic acid)/poly(amidoamine) dendrimerelectrospun nanofibrous for biomedical application. Biomedical Materials (Bristol), 2022, 17, 015007.	1.7	0