
Thamil Selvi Velayutham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6578716/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A new light-responsive resistive random-access memory device containing hydrogen-bonded complexes. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 404, 112914.	3.9	8
2	Synthesis and Characterization of Methyl Acrylate-Copolymerized Medium-Chain-Length Poly-3-hydroxyalkanoates. Journal of Polymers and the Environment, 2021, 29, 3004-3014.	5.0	4
3	Structure-property interpretation of biological polyhydroxyalkanoates with different monomeric composition: Dielectric spectroscopy investigation. International Journal of Biological Macromolecules, 2021, 169, 311-320.	7.5	14
4	New side-chain liquid crystalline terpolymers with anhydrous conductivity: Effect of azobenzene substitution on light response and charge transfer. European Polymer Journal, 2021, 146, 110246.	5.4	6
5	TEMPO-oxidized nanocellulose films derived from coconut residues: Physicochemical, mechanical and electrical properties. International Journal of Biological Macromolecules, 2021, 180, 392-402.	7.5	28
6	Mesomorphic, optical, dielectric, and electro-optic properties of azo-ester materials: Effect of lateral methyl and terminal substituents. Journal of Molecular Liquids, 2021, 336, 116308.	4.9	5
7	p-Methoxy Azobenzene Terpolymer as a Promising Energy-Storage Liquid Crystal System. Journal of Physical Chemistry C, 2021, 125, 22472-22482.	3.1	13
8	Maximizing the output power density enhancement of solid polymer electrolyte based-triboelectric nanogenerators via contact electrification-induced ionic polarization. Nano Energy, 2021, 90, 106616.	16.0	23
9	Structural control of the dielectric, pyroelectric and ferroelectric properties of poly(vinylidene) Tj ETQq1 1 0.7843 2414-2423.	14 rgBT /C 2.8	Overlock 10 15
10	The role of conductivity and molecular mobility on the photoanisotropic response of a new azo-polymer containing sulfonic groups. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 389, 112268.	3.9	10
11	The synergic influence of carbon nanotube and nanosilica on the compressive strength of lightweight concrete. Journal of Building Engineering, 2020, 32, 101719.	3.4	8
12	Liquid Crystalline Copolymers Containing Sulfonic and Light-Responsive Groups: From Molecular Design to Conductivity. Molecules, 2020, 25, 2579.	3.8	12
13	Glycolipids from natural sources: dry liquid crystal properties, hydrogen bonding and molecular mobility of Palm Kernel oil mannosides. Liquid Crystals, 2020, 47, 1180-1194.	2.2	14
14	An overlapped electron-cloud model for the contact electrification in piezo-assisted triboelectric nanogenerators <i>via</i> control of piezoelectric polarization. Journal of Materials Chemistry A, 2020, 8, 25857-25866.	10.3	16
15	Ferroelectric, pyroelectric and piezoelectric properties of CeO2-doped Na0.5Bi0.5TiO3 ceramics. SN Applied Sciences, 2019, 1, 1.	2.9	8
16	Effects of lipid packing and intermolecular hydrogen bond on thermotropic phase transition of stearyl glucoside. Journal of Molecular Liquids, 2019, 281, 20-28.	4.9	5
17	Miscibility and Crystallinity Study of Poly(vinylidene Fluoride) / Poly(L-Lactic Acid) Polymer Blend. Materials Today: Proceedings, 2018, 5, S130-S136.	1.8	2
18	Review of Cellulose Smart Material: Biomass Conversion Process and Progress on Cellulose-Based Electroactive Paper, Journal of Renewable Materials, 2018, 6, 1-25.	2.2	29

#	Article	IF	CITATIONS
19	Dry Thermotropic Glycolipid Self-Assembly:A Review. Journal of Oleo Science, 2018, 67, 651-668.	1.4	27
20	Improving the operational voltage of vertical organic field effect transistor (VOFET) by altering the morphology of dielectric layer. Journal of Materials Science: Materials in Electronics, 2017, 28, 11961-11968.	2.2	6
21	Dielectric, pyroelectric, and ferroelectric properties of gadolinium doped Sr0.53Ba0.47Nb2O6 ceramic. Ceramics International, 2017, 43, 9783-9789.	4.8	12
22	Energy storage properties of Dy3+ doped Sr0.5Ba0.5Nb2O6 thick film with nano-size grains. Metals and Materials International, 2017, 23, 1045-1049.	3.4	7
23	Pyroelectric, ferroelectric, piezoelectric and dielectric properties of Na0.5Bi0.5TiO3 ceramic prepared by sol-gel method. Ceramics International, 2016, 42, 15664-15670.	4.8	24
24	Molecular dynamics of anhydrous glycolipid self-assembly in lamellar and hexagonal phases. Physical Chemistry Chemical Physics, 2016, 18, 15182-15190.	2.8	11
25	Effect of cerium addition on the microstructure, electrical and relaxor behavior of Sr0.5Ba0.5Nb2O6 ceramics. Journal of Alloys and Compounds, 2016, 666, 334-340.	5.5	22
26	The structural and electrical properties of SrxBa(1â~'x)Nb2O6 (SBN) ceramic with varied composition. Ceramics International, 2015, 41, 7119-7124.	4.8	34
27	Thermally induced crystallization of mechanically alloyed Na0.5Bi0.5TiO3 and K0.5Bi0.5TiO3 piezoelectric ceramic nanopowders. Ceramics International, 2015, 41, 14157-14164.	4.8	2
28	Ferroelectric and pyroelectric properties of novel lead-free polyvinylidenefluoride-trifluoroethylene–Bi0.5Na0.5TiO3 nanocomposite thin films for sensing applications. Ceramics International, 2015, 41, 13836-13843.	4.8	29
29	Phase sensitive molecular dynamics of self-assembly glycolipid thin films: A dielectric spectroscopy investigation. Journal of Chemical Physics, 2014, 141, 085101.	3.0	17
30	Pyroelectricity enhancement of PVDF nanocomposite thin films doped with ZnO nanoparticles. Smart Materials and Structures, 2014, 23, 125006.	3.5	49
31	Pyroelectricity in Synthetic Amphitropic Glycolipid for Potential Application of IR Sensor Device. Ferroelectrics, 2013, 445, 67-73.	0.6	5
32	Effect of oleic acid content and chemical crosslinking on the properties of palm oilâ€based polyurethane coatings. Journal of Applied Polymer Science, 2013, 129, 415-421.	2.6	5
33	Theoretical and experimental approach on dielectric properties of ZnO nanoparticles and polyurethane/ZnO nanocomposites. Journal of Applied Physics, 2012, 112, .	2.5	53
34	Experimental and theoretical dielectric studies of PVDF/PZT nanocomposite thin films. Ceramics International, 2011, 37, 1653-1660.	4.8	123
35	Electrical behavior of polyurethane derived from polyols synthesized with glycerol, phthalic anhydride, and oleic acid. Journal of Applied Polymer Science, 2011, 121, 1796-1803.	2.6	2
36	Synthesis and characterization of polyurethane coatings derived from polyols synthesized with glycerol, phthalic anhydride and oleic acid. Progress in Organic Coatings, 2009, 66, 367-371.	3.9	68

#	Article	IF	CITATIONS
37	The physical and mechanical properties of polyurethanes from oleic acid polyols. Journal of Applied Polymer Science, 2009, 112, 3554-3559.	2.6	19