Andrew R Zimmerman

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/65787/andrew-r-zimmerman-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

14,326 119 110 53 h-index g-index citations papers 16,528 6.97 7.8 119 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
110	Synthesis of hickory biochar via one-step acidic ball milling: Characteristics and titan yellow adsorption. <i>Journal of Cleaner Production</i> , 2022 , 338, 130575	10.3	1
109	Preparation of biosorbent for the removal of organic dyes from aqueous solution via one-step alkaline ball milling of hickory wood <i>Bioresource Technology</i> , 2022 , 348, 126831	11	1
108	Microwave biochars produced with activated carbon catalyst: Characterization and sorption of volatile organic compounds (VOCs) <i>Science of the Total Environment</i> , 2022 , 153996	10.2	2
107	Microwave-assisted pyrolysis derived biochar for volatile organic compounds treatment: Characteristics and adsorption performance <i>Bioresource Technology</i> , 2022 , 355, 127274	11	3
106	Biolability of Fresh and Photodegraded Pyrogenic Dissolved Organic Matter From Laboratory-Prepared Chars. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2021 , 126, e2020JG0059	8³t ⁷	6
105	Stabilization of PFAS-contaminated soil with activated biochar. <i>Science of the Total Environment</i> , 2021 , 763, 144034	10.2	17
104	P-enriched hydrochar for soil remediation: Synthesis, characterization, and lead stabilization. <i>Science of the Total Environment</i> , 2021 , 783, 146983	10.2	3
103	Mechanisms and adsorption capacities of hydrogen peroxide modified ball milled biochar for the removal of methylene blue from aqueous solutions. <i>Bioresource Technology</i> , 2021 , 337, 125432	11	21
102	Hydrothermal carbonization of distillers grains with clay minerals for enhanced adsorption of phosphate and methylene blue. <i>Bioresource Technology</i> , 2021 , 340, 125725	11	6
101	One-pot synthesis and characterization of engineered hydrochar by hydrothermal carbonization of biomass with ZnCl. <i>Chemosphere</i> , 2020 , 254, 126866	8.4	29
100	Photolability of pyrogenic dissolved organic matter from a thermal series of laboratory-prepared chars. <i>Science of the Total Environment</i> , 2020 , 724, 138198	10.2	11
99	Solvent-free synthesis of magnetic biochar and activated carbon through ball-mill extrusion with FeO nanoparticles for enhancing adsorption of methylene blue. <i>Science of the Total Environment</i> , 2020 , 722, 137972	10.2	62
98	Molecular heterogeneity in pyrogenic dissolved organic matter from a thermal series of oak and grass chars. <i>Organic Geochemistry</i> , 2020 , 148, 104065	3.1	12
97	Simulated photocatalytic aging of biochar in soil ecosystem: Insight into organic carbon release, surface physicochemical properties and cadmium sorption. <i>Environmental Research</i> , 2020 , 183, 109241	7.9	22
96	Ball milled biochar effectively removes sulfamethoxazole and sulfapyridine antibiotics from water and wastewater. <i>Environmental Pollution</i> , 2020 , 258, 113809	9.3	68
95	Photochemistry after fire: Structural transformations of pyrogenic dissolved organic matter elucidated by advanced analytical techniques. <i>Geochimica Et Cosmochimica Acta</i> , 2020 , 290, 271-292	5.5	3
94	Removal of aqueous Cr(VI) by Zn- and Al-modified hydrochar. <i>Chemosphere</i> , 2020 , 260, 127610	8.4	22

93	Comparative investigation of characteristics and phosphate removal by engineered biochars with different loadings of magnesium, aluminum, or iron. <i>Science of the Total Environment</i> , 2020 , 747, 14127	7 ^{10.2}	22
92	Effects of laboratory biotic aging on the characteristics of biochar and its water-soluble organic products. <i>Journal of Hazardous Materials</i> , 2020 , 382, 121071	12.8	45
91	Can biochar and designer biochar be used to remediate per- and polyfluorinated alkyl substances (PFAS) and lead and antimony contaminated soils?. <i>Science of the Total Environment</i> , 2019 , 694, 133693	10.2	27
90	Priming of pyrogenic C (biochar) mineralization by dissolved organic matter and vice versa. <i>Soil Biology and Biochemistry</i> , 2019 , 130, 105-112	7.5	32
89	Biochar application to low fertility soils: A review of current status, and future prospects. <i>Geoderma</i> , 2019 , 337, 536-554	6.7	357
88	Reflecting on a multidisciplinary collaboration to design a general education climate change course. Journal of Environmental Studies and Sciences, 2018 , 8, 32-38	0.9	5
87	Bioconcentration factor-based management of soil pesticide residues: Endosulfan uptake by carrot and potato plants. <i>Science of the Total Environment</i> , 2018 , 627, 514-522	10.2	39
86	Novel biochar-impregnated calcium alginate beads with improved water holding and nutrient retention properties. <i>Journal of Environmental Management</i> , 2018 , 209, 105-111	7.9	54
85	Refractory organic matter in coastal salt marshes-effect on C sequestration calculations. <i>Science of the Total Environment</i> , 2018 , 633, 391-398	10.2	7
84	Impregnation of multiwall carbon nanotubes in alginate beads dramatically enhances their adsorptive ability to aqueous methylene blue. <i>Chemical Engineering Research and Design</i> , 2018 , 133, 235	5 - 242	40
83	Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue. <i>Chemical Engineering Journal</i> , 2018 , 335, 110-119	14.7	160
82	Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms. <i>Environmental Pollution</i> , 2018 , 233, 54-63	9.3	188
81	Production and Composition of Pyrogenic Dissolved Organic Matter From a Logical Series of Laboratory-Generated Chars. <i>Frontiers in Earth Science</i> , 2018 , 6,	3.5	20
80	Consider Fjord-Assisted Carbon Storage. <i>Environmental Science & Environmental Science & Environmental</i>	1≩0.3	4
79	Multi-year double cropping biochar field trials in Nepal: Finding the optimal biochar dose through agronomic trials and cost-benefit analysis. <i>Science of the Total Environment</i> , 2018 , 637-638, 1333-1341	10.2	36
78	Paleoecology Studies in Chesapeake Bay: A Model System for Understanding Interactions Between Climate, Anthropogenic Activities and the Environment. <i>Developments in Paleoenvironmental Research</i> , 2017 , 495-527		3
77	Stable carbon isotopes (🛮 3C) of total organic carbon and long-chain n-alkanes as proxies for climate and environmental change in a sediment core from Lake Pet 🗓 - Itz 🖟 Guatemala. <i>Journal of Paleolimnology</i> , 2017 , 57, 307-319	2.1	8
76	A protocol for pressurized liquid extraction and processing methods to isolate modern and ancient bone cholesterol for compound-specific stable isotope analysis. <i>Rapid Communications in Mass Spectrometry</i> , 2017 , 31, 235-244	2.2	2

75	Trial by Fire: On the Terminology and Methods Used in Pyrogenic Organic Carbon Research. <i>Frontiers in Earth Science</i> , 2017 , 5,	3.5	17
74	Sorption of hydrophobic organic compounds to a diverse suite of carbonaceous materials with emphasis on biochar. <i>Chemosphere</i> , 2016 , 144, 879-87	8.4	48
73	Physically (CO2) activated hydrochars from hickory and peanut hull: preparation, characterization, and sorption of methylene blue, lead, copper, and cadmium. <i>RSC Advances</i> , 2016 , 6, 24906-24911	3.7	48
72	Arsenic release from Floridan Aquifer rock during incubations simulating aquifer storage and recovery operations. <i>Science of the Total Environment</i> , 2016 , 551-552, 238-45	10.2	4
71	Sorption of arsenic onto Ni/Fe layered double hydroxide (LDH)-biochar composites. <i>RSC Advances</i> , 2016 , 6, 17792-17799	3.7	62
70	A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. <i>Critical Reviews in Environmental Science and Technology</i> , 2016 , 46, 406-433	11.1	703
69	Sorption of lead and methylene blue onto hickory biochars from different pyrolysis temperatures: Importance of physicochemical properties. <i>Journal of Industrial and Engineering Chemistry</i> , 2016 , 37, 261	1-2 3 7	90
68	Spatiotemporal variations in carbon dynamics during a low flow period in a carbonate karst watershed: Santa Fe River, Florida, USA. <i>Biogeochemistry</i> , 2015 , 122, 131-150	3.8	6
67	Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. <i>Bioresource Technology</i> , 2015 , 175, 391-5	11	410
66	Sorption of the monoterpenes pinene and limonene to carbonaceous geosorbents including biochar. <i>Chemosphere</i> , 2015 , 119, 881-888	8.4	20
65	Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. <i>Water Research</i> , 2015 , 68, 206-16	12.5	347
64	Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass. <i>Chemosphere</i> , 2015 , 134, 257-62	8.4	140
63	Manganese oxide-modified biochars: preparation, characterization, and sorption of arsenate and lead. <i>Bioresource Technology</i> , 2015 , 181, 13-7	11	254
62	Hydrochars derived from plant biomass under various conditions: Characterization and potential applications and impacts. <i>Chemical Engineering Journal</i> , 2015 , 267, 253-259	14.7	141
61	Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars. <i>Environmental Science and Pollution Research</i> , 2015 , 22, 1868-76	5.1	106
60	Organic and inorganic carbon dynamics in a karst aquifer: Santa Fe River Sink-Rise system, north Florida, USA. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2014 , 119, 340-357	3.7	19
59	A 700 year record of combustion-derived pollution in northern Spain: tools to identify the Holocene/Anthropocene transition in coastal environments. <i>Science of the Total Environment</i> , 2014 , 470-471, 240-7	10.2	56
58	Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. <i>Science of the Total Environment</i> , 2014 , 487, 26-36	10.2	184

(2012-2014)

57	Sorption and cosorption of lead (II) and methylene blue on chemically modified biomass. <i>Bioresource Technology</i> , 2014 , 167, 569-73	11	63
56	Impacts of Biochar and Other Amendments on Soil-Carbon and Nitrogen Stability: A Laboratory Column Study. <i>Soil Science Society of America Journal</i> , 2014 , 78, 1258-1266	2.5	21
55	Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging. <i>Solid Earth</i> , 2014 , 5, 693-704	3.3	120
54	Biochar-supported zerovalent iron reclaims silver from aqueous solution to form antimicrobial nanocomposite. <i>Chemosphere</i> , 2014 , 117, 801-5	8.4	57
53	Impacts of 1.5-Year Field Aging on Biochar, Humic Acid, and Water Treatment Residual Amended Soil. <i>Soil Science</i> , 2014 , 179, 333-339	0.9	22
52	Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions. <i>Bioresource Technology</i> , 2014 , 152, 538-42	11	275
51	SWEATT (Solid Waste to Energy by Advanced Thermal Technologies) 2014, 1861-1886		
50	Sorption of heavy metals on chitosan-modified biochars and its biological effects. <i>Chemical Engineering Journal</i> , 2013 , 231, 512-518	14.7	241
49	Organic carbon and nutrient release from a range of laboratory-produced biochars and biocharBoil mixtures. <i>Geoderma</i> , 2013 , 193-194, 122-130	6.7	337
48	Rapid degradation of Deepwater Horizon spilled oil by indigenous microbial communities in Louisiana saltmarsh sediments. <i>Environmental Science & Environmental Science & Envi</i>	10.3	89
47	Sorption of atrazine and ametryn by carbonatic and non-carbonatic soils of varied origin. <i>Environmental Pollution</i> , 2012 , 169, 12-9	9.3	36
46	Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. <i>Bioresource Technology</i> , 2012 , 110, 50-6	11	519
45	Adsorption of sulfamethoxazole on biochar and its impact on reclaimed water irrigation. <i>Journal of Hazardous Materials</i> , 2012 , 209-210, 408-13	12.8	198
44	Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. <i>Chemosphere</i> , 2012 , 89, 1467-71	8.4	553
43	An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars). <i>Environmental Science & Environmental Scie</i>	10.3	239
42	Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. <i>Chemical Engineering Journal</i> , 2012 , 200-202, 673-680	14.7	451
41	Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. <i>Environmental Science & Environmental Science & Envi</i>	10.3	410
40	Sparse pre-Columbian human habitation in western Amazonia. <i>Science</i> , 2012 , 336, 1429-31	33.3	151

39	Pulse perturbations from bacterial decomposition of Chrysaora quinquecirrha (Scyphozoa: Pelagiidae). <i>Hydrobiologia</i> , 2012 , 690, 247-256	2.4	9
38	Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. <i>Biology and Fertility of Soils</i> , 2012 , 48, 271-284	6.1	456
37	Spatial and temporal scales of pre-Columbian disturbance associated with western Amazonian lakes. <i>Holocene</i> , 2012 , 22, 131-141	2.6	67
36	Degradation and resilience in Louisiana salt marshes after the BP-Deepwater Horizon oil spill. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 11234-9	11.5	245
35	Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	283
34	Enhanced Lead Sorption by Biochar Derived from Anaerobically Digested Sugarcane Bagasse. <i>Separation Science and Technology</i> , 2011 , 46, 1950-1956	2.5	179
33	Surface chemistry variations among a series of laboratory-produced biochars. <i>Geoderma</i> , 2011 , 163, 247	7 -2.5 5	699
32	Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments. <i>Soil Biology and Biochemistry</i> , 2011 , 43, 385-392	7.5	250
31	Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. <i>Soil Biology and Biochemistry</i> , 2011 , 43, 1169-1179	7.5	897
30	Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential. <i>Bioresource Technology</i> , 2011 , 102, 6273-8	11	424
29	Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. <i>Journal of Hazardous Materials</i> , 2011 , 190, 501-7	12.8	395
28	Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars). <i>Environmental Science & Documental Scie</i>	10.3	329
27	Characterization of adsorption and degradation of diuron in carbonatic and noncarbonatic soils. <i>Journal of Agricultural and Food Chemistry</i> , 2010 , 58, 1055-61	5.7	15
26	Organo-Mineral E nzyme Interaction and Soil Enzyme Activity. <i>Soil Biology</i> , 2010 , 271-292	1	26
25	Abiotic interactions of natural dissolved organic matter and carbonate aquifer rock. <i>Applied Geochemistry</i> , 2010 , 25, 472-484	3.5	16
24	A novel application of radionuclides for dating sediment cores from sandy, anthropogenically disturbed estuaries. <i>Marine and Freshwater Research</i> , 2010 , 61, 1268	2.2	10
23	Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). <i>Environmental Science & Environmental </i>	10.3	728
22	Fluxes of PAHs from coal tar-impacted river sediment under variable seepage rates. <i>Chemosphere</i> , 2010 , 80, 1261-7	8.4	3

21	Biochar from anaerobically digested sugarcane bagasse. <i>Bioresource Technology</i> , 2010 , 101, 8868-72	11	298
20	Carbon Mineralization and Labile Organic Carbon Pools in the Sandy Soils of a North Florida Watershed. <i>Ecosystems</i> , 2009 , 12, 672-685	3.9	62
19	A Holocene record of climate-driven shifts in coastal carbon sequestration. <i>Geophysical Research Letters</i> , 2009 , 36,	4.9	8
18	Influence of a soil enzyme on iron-cyanide complex speciation and mineral adsorption. <i>Chemosphere</i> , 2008 , 70, 1044-51	8.4	20
17	Implication of hydraulic properties of bioremediated diesel-contaminated soil. <i>Chemosphere</i> , 2008 , 71, 1646-53	8.4	17
16	Characteristics of Trametes villosa laccase adsorbed on aluminum hydroxide. <i>Enzyme and Microbial Technology</i> , 2007 , 41, 141-148	3.8	38
15	Transformation of catechol in the presence of a laccase and birnessite. <i>Soil Biology and Biochemistry</i> , 2006 , 38, 1015-1020	7.5	37
14	Sorption of the antibiotic ofloxacin to mesoporous and nonporous alumina and silica. <i>Journal of Colloid and Interface Science</i> , 2005 , 283, 160-70	9.3	144
13	Influence of mesoporosity on the sorption of 2,4-dichlorophenoxyacetic acid onto alumina and silica. <i>Journal of Colloid and Interface Science</i> , 2004 , 272, 10-20	9.3	23
12	Protection of mesopore-adsorbed organic matter from enzymatic degradation. <i>Environmental Science & Environmental Science & En</i>	10.3	96
12		10.3	96 8 ₇
	Science & Damp; Technology, 2004, 38, 4542-8 Mineral mesopore effects on nitrogenous organic matter adsorption. Organic Geochemistry, 2004,		
11	Science & Damp; Technology, 2004, 38, 4542-8 Mineral mesopore effects on nitrogenous organic matter adsorption. Organic Geochemistry, 2004, 35, 355-375 A Pb isotope record of mid-Atlantic US atmospheric Pb emissions in Chesapeake Bay sediments.	3.1	87
11	Science & Dating, Chronologic Framework, and Changes in Accumulation Rates of Holocene	3.1	8 ₇ 53
11 10 9	Mineral mesopore effects on nitrogenous organic matter adsorption. <i>Organic Geochemistry</i> , 2004 , 35, 355-375 A Pb isotope record of mid-Atlantic US atmospheric Pb emissions in Chesapeake Bay sediments. <i>Marine Chemistry</i> , 2002 , 77, 123-132 Radiocarbon Dating, Chronologic Framework, and Changes in Accumulation Rates of Holocene Estuarine Sediments from Chesapeake Bay. <i>Quaternary Research</i> , 2002 , 57, 58-70 Surface Charge of Variable Porosity Al2O3(s) and SiO2(s) Adsorbents. <i>Journal of Porous Materials</i> ,	3.1 3.7 1.9	8 ₇ 53 71
11 10 9	Mineral mesopore effects on nitrogenous organic matter adsorption. Organic Geochemistry, 2004, 35, 355-375 A Pb isotope record of mid-Atlantic US atmospheric Pb emissions in Chesapeake Bay sediments. Marine Chemistry, 2002, 77, 123-132 Radiocarbon Dating, Chronologic Framework, and Changes in Accumulation Rates of Holocene Estuarine Sediments from Chesapeake Bay. Quaternary Research, 2002, 57, 58-70 Surface Charge of Variable Porosity Al2O3(s) and SiO2(s) Adsorbents. Journal of Porous Materials, 2002, 9, 243-256 Sediment geochemical records of eutrophication in the mesohaline Chesapeake Bay. Limnology and	3.1 3.7 1.9	87 53 71 68
11 10 9 8	Mineral mesopore effects on nitrogenous organic matter adsorption. Organic Geochemistry, 2004, 35, 355-375 A Pb isotope record of mid-Atlantic US atmospheric Pb emissions in Chesapeake Bay sediments. Marine Chemistry, 2002, 77, 123-132 Radiocarbon Dating, Chronologic Framework, and Changes in Accumulation Rates of Holocene Estuarine Sediments from Chesapeake Bay. Quaternary Research, 2002, 57, 58-70 Surface Charge of Variable Porosity Al2O3(s) and SiO2(s) Adsorbents. Journal of Porous Materials, 2002, 9, 243-256 Sediment geochemical records of eutrophication in the mesohaline Chesapeake Bay. Limnology and Oceanography, 2002, 47, 1084-1093 Bulk Organic Matter and Lipid Biomarker Composition of Chesapeake Bay Surficial Sediments as	3.1 3.7 1.9 2.4 4.8	87 53 71 68 96

4

2 Blackcarbon in coastal and large river systems 200-234

8

A Quantitative Model of the Dispersal of Detrital Inputs and Minor Compositional Components in

Physicochemical changes in pyrogenic organic matter (biochar) after 15 months field-aging