
Joaquin Resasco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/657861/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancing the connection between computation and experiments in electrocatalysis. Nature Catalysis, 2022, 5, 374-381.	16.1	45
2	Uniformity Is Key in Defining Structure–Function Relationships for Atomically Dispersed Metal Catalysts: The Case of Pt/CeO ₂ . Journal of the American Chemical Society, 2020, 142, 169-184.	6.6	170
3	Relationship between Atomic Scale Structure and Reactivity of Pt Catalysts: Hydrodeoxygenation of <i>m</i> -Cresol over Isolated Pt Cations and Clusters. ACS Catalysis, 2020, 10, 595-603.	5.5	68
4	Atomically Dispersed Pt-group Catalysts: Reactivity, Uniformity, Structural Evolution, and Paths to Increased Functionality. Journal of Physical Chemistry Letters, 2020, 11, 10114-10123.	2.1	24
5	Electrocatalytic CO2 Reduction to Fuels: Progress and Opportunities. Trends in Chemistry, 2020, 2, 825-836.	4.4	104
6	Dynamic Control of Elementary Step Energetics via Pulsed Illumination Enhances Photocatalysis on Metal Nanoparticles. ACS Energy Letters, 2020, 5, 3518-3525.	8.8	41
7	The Catalytic Mechanics of Dynamic Surfaces: Stimulating Methods for Promoting Catalytic Resonance. ACS Catalysis, 2020, 10, 12666-12695.	5.5	54
8	Understanding cation effects in electrochemical CO ₂ reduction. Energy and Environmental Science, 2019, 12, 3001-3014.	15.6	433
9	Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nature Materials, 2019, 18, 746-751.	13.3	404
10	Effects of Anion Identity and Concentration on Electrochemical Reduction of CO ₂ . ChemElectroChem, 2018, 5, 1064-1072.	1.7	165
11	Standards and Protocols for Data Acquisition and Reporting for Studies of the Electrochemical Reduction of Carbon Dioxide. ACS Catalysis, 2018, 8, 6560-6570.	5.5	250
12	Combining <i>In-Situ</i> Transmission Electron Microscopy and Infrared Spectroscopy for Understanding Dynamic and Atomic-Scale Features of Supported Metal Catalysts. Journal of Physical Chemistry C, 2018, 122, 25143-25157.	1.5	41
13	Approaches for Understanding and Controlling Interfacial Effects in Oxide-Supported Metal Catalysts. ACS Catalysis, 2018, 8, 7368-7387.	5.5	224
14	Promoter Effects of Alkali Metal Cations on the Electrochemical Reduction of Carbon Dioxide. Journal of the American Chemical Society, 2017, 139, 11277-11287.	6.6	653
15	Solution-Processed Copper/Reduced-Graphene-Oxide Core/Shell Nanowire Transparent Conductors. ACS Nano, 2016, 10, 2600-2606.	7.3	155
16	TiO ₂ /BiVO ₄ Nanowire Heterostructure Photoanodes Based on Type II Band Alignment. ACS Central Science, 2016, 2, 80-88.	5.3	263
17	<i>Operando</i> Spectroscopic Analysis of an Amorphous Cobalt Sulfide Hydrogen Evolution Electrocatalyst. Journal of the American Chemical Society, 2015, 137, 7448-7455.	6.6	330
18	Atomic Structure of Pt ₃ Ni Nanoframe Electrocatalysts by <i>in Situ</i> X-ray Absorption Spectroscopy. Journal of the American Chemical Society, 2015, 137, 15817-15824.	6.6	197

JOAQUIN RESASCO

#	Article	IF	CITATIONS
19	MoS2-wrapped silicon nanowires for photoelectrochemical water reduction. Nano Research, 2015, 8, 281-287.	5.8	87
20	Hybrid bioinorganic approach to solar-to-chemical conversion. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11461-11466.	3.3	234
21	Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nature Communications, 2014, 5, 4948.	5.8	1,062
22	Uniform Doping of Metal Oxide Nanowires Using Solid State Diffusion. Journal of the American Chemical Society, 2014, 136, 10521-10526.	6.6	50