Stephane Perrey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6578562/publications.pdf

Version: 2024-02-01

210 papers

6,682 citations

71061 41 h-index ⁸⁸⁵⁹³ 70

g-index

244 all docs 244 docs citations

times ranked

244

7089 citing authors

#	Article	IF	CITATIONS
1	Stable decoding of working memory load through frequency bands. Cognitive Neuroscience, 2023, 14, 1-14.	0.6	o
2	Training load responses modelling and model generalisation in elite sports. Scientific Reports, 2022, 12, 1586.	1.6	10
3	Muscle Oxygenation Unlocks the Secrets of Physiological Responses to Exercise: Time to Exploit it in the Training Monitoring. Frontiers in Sports and Active Living, 2022, 4, 864825.	0.9	9
4	The Use of Fitness-Fatigue Models for Sport Performance Modelling: Conceptual Issues and Contributions from Machine-Learning. Sports Medicine - Open, 2022, 8, 29.	1.3	5
5	Performance after training in a complex cognitive task is enhanced by high-definition transcranial random noise stimulation. Scientific Reports, 2022, 12, 4618.	1.6	3
6	Training Monitoring in Sports: It Is Time to Embrace Cognitive Demand. Sports, 2022, 10, 56.	0.7	9
7	Structural and functional brain signatures of endurance runners. Brain Structure and Function, 2021, 226, 93-103.	1.2	14
8	Quelles preuves des effets de la stimulation cérébrale sur la performance physique�. Science and Sports, 2021, 36, 74-76.	0.2	0
9	Cognitive benefits of exercise interventions: an fMRI activation likelihood estimation meta-analysis. Brain Structure and Function, 2021, 226, 601-619.	1.2	49
10	Grey-box modeling and hypothesis testing of functional near-infrared spectroscopy-based cerebrovascular reactivity to anodal high-definition tDCS in healthy humans. PLoS Computational Biology, 2021, 17, e1009386.	1.5	10
11	Cerebral Oxygenation Responses to Aerobatic Flight. Aerospace Medicine and Human Performance, 2021, 92, 838-842.	0.2	2
12	Recovering arm function in chronic stroke patients using combined anodal HD-tDCS and virtual reality therapy (ReArm): a study protocol for a randomized controlled trial. Trials, 2021, 22, 747.	0.7	13
13	Towards Standardized Instructions For Measuring Perception Of Effort And Muscle Pain During Physical Exercise. Medicine and Science in Sports and Exercise, 2020, 52, 499-499.	0.2	3
14	Effects of Multiple Sessions of Cathodal Priming and Anodal HD-tDCS on Visuo Motor Task Plateau Learning and Retention. Brain Sciences, 2020, 10, 875.	1.1	6
15	"No Pain No Gain― Evidence from a Parcel-Wise Brain Morphometry Study on the Volitional Quality of Elite Athletes. Brain Sciences, 2020, 10, 459.	1.1	6
16	Validity of the Stryd Power Meter in Measuring Running Parameters at Submaximal Speeds. Sports, 2020, 8, 103.	0.7	33
17	Is bilateral corticospinal connectivity impaired in patients with chronic obstructive pulmonary disease?. Journal of Physiology, 2020, 598, 4591-4602.	1.3	3
18	Combining Internal- and External-Training-Loads to Predict Non-Contact Injuries in Soccer. Applied Sciences (Switzerland), 2020, 10, 5261.	1.3	29

#	Article	IF	CITATIONS
19	Changes in Prefrontal Cortical Activity During Walking and Cognitive Functions Among Patients With Parkinson's Disease. Frontiers in Neurology, 2020, 11, 601686.	1.1	29
20	Exercise: A Gate That Primes the Brain to Perform. Brain Sciences, 2020, 10, 980.	1.1	1
21	Does Cardiorespiratory Fitness Influence the Effect of Acute Aerobic Exercise on Executive Function?. Frontiers in Human Neuroscience, 2020, 14, 569010.	1.0	15
22	Regular Tai Chi Practice Is Associated With Improved Memory as Well as Structural and Functional Alterations of the Hippocampus in the Elderly. Frontiers in Aging Neuroscience, 2020, 12, 586770.	1.7	25
23	Quantitative assessment of near-infrared spectroscopy time course under hypercapnia using an a priori model-based fitting. Computers in Biology and Medicine, 2020, 118, 103638.	3.9	1
24	Implication of the ipsilateral motor network in unilateral voluntary muscle contraction: the cross-activation phenomenon. Journal of Neurophysiology, 2020, 123, 2090-2098.	0.9	16
25	Commentaries on Viewpoint: Physiology and fast marathons. Journal of Applied Physiology, 2020, 128, 1069-1085.	1.2	12
26	Fractal properties in sensorimotor variability unveil internal adaptations of the organism before symptomatic functional decline. Scientific Reports, 2019, 9, 15736.	1.6	23
27	Time course of sensorimotor cortex reorganization during upper extremity task accompanying motor recovery early after stroke: An fNIRS study. Restorative Neurology and Neuroscience, 2019, 37, 207-218.	0.4	21
28	Effect of transcranial direct current stimulation on exercise performance: A systematic review and meta-analysis. Brain Stimulation, 2019, 12, 593-605.	0.7	91
29	Concurrent anodal transcranial direct-current stimulation and motor task to influence sensorimotor cortex activation. Brain Research, 2019, 1710, 181-187.	1.1	23
30	Neurophysiological Correlates of tDCS-Induced Modulation of Cortical Sensorimotor Networks. , 2019, , 147-151.		2
31	The Use of tDCS and rTMS Methods in Neuroergonomics. , 2019, , 31-33.		3
32	Focal Hemodynamic Responses in the Stimulated Hemisphere During High-Definition Transcranial Direct Current Stimulation. Neuromodulation, 2018, 21, 348-354.	0.4	39
33	Brain activation associated with eccentric movement: A narrative review of the literature. European Journal of Sport Scientification with smalls: "http://www.w3.org/1998/Math/MathML" altimg="si4.gif"	1.4	25
34	overflow="scroll"> <mml:mrow><mml:mover accent="true"><mml:mtext>V</mml:mtext><mml:mo>Ë™</mml:mo></mml:mover><mml:msub><mml:mtext>O<component altimg="si3.gif" at<mml:math="" during="" exercises="" intermittent="" overflow="scroll" performed="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mover< td=""><td>0.2</td><td>ext><mml:mi 1</mml:mi </td></mml:mover<></mml:mrow></component></mml:mtext></mml:msub></mml:mrow>	0.2	ext> <mml:mi 1</mml:mi
35	overflow="scroll"> <mml:mrow><mml:mover accent="true"><mml:mtext>V</mml:mtext><mml:mo>E™Muscle Oximetry in Sports Science: A Systematic Review. Sports Medicine, 2018, 48, 597-616.</mml:mo></mml:mover </mml:mrow>	3.1	132
36	Functional nearâ€infrared spectroscopy to probe sensorimotor region activation during electrical stimulationâ€evoked movement. Clinical Physiology and Functional Imaging, 2018, 38, 816-822.	0.5	7

#	Article	IF	CITATIONS
37	Numéro 100 !. Movement and Sports Sciences - Science Et Motricite, 2018, , 1-3.	0.2	o
38	Comparison of repeated transcranial stimulation and transcranial direct-current stimulation on primary motor cortex excitability and inhibition: A pilot study. Movement and Sports Sciences - Science Et Motricite, 2018, , 59-67.	0.2	1
39	Concurrent Changes of Brain Functional Connectivity and Motor Variability When Adapting to Task Constraints. Frontiers in Physiology, 2018, 9, 909.	1.3	23
40	Different Hemodynamic Responses of the Primary Motor Cortex Accompanying Eccentric and Concentric Movements: A Functional NIRS Study. Brain Sciences, 2018, 8, 75.	1.1	6
41	Studying brain activity in sports performance: Contributions and issues. Progress in Brain Research, 2018, 240, 247-267.	0.9	33
42	High-definition transcranial direct-current stimulation of the right M1 further facilitates left M1 excitability during crossed facilitation. Journal of Neurophysiology, 2018, 119, 1266-1272.	0.9	17
43	The differential effects of prolonged exercise upon executive function and cerebral oxygenation. Brain and Cognition, 2017, 113, 133-141.	0.8	53
44	Neuromuscular Fatigue during Prolonged Exercise in Hypoxia. Medicine and Science in Sports and Exercise, 2017, 49, 430-439.	0.2	24
45	Do we perform better when we increase red blood cells?. Lancet Haematology,the, 2017, 4, e344-e345.	2.2	1
46	Saving mental effort to maintain physical effort: a shift of activity within the prefrontal cortex in anticipation of prolonged exercise. Cognitive, Affective and Behavioral Neuroscience, 2017, 17, 305-314.	1.0	43
47	Dynamics of the human brain network revealed by time-frequency effective connectivity in fNIRS. Biomedical Optics Express, 2017, 8, 5326.	1.5	24
48	Cortical Reorganization in Response to Exercise. , 2017, , 151-159.		1
49	Local muscle metabolic demand induced by neuromuscular electrical stimulation and voluntary contractions at different force levels: a NIRS study. European Journal of Translational Myology, 2016, 26, 6058.	0.8	9
50	Commentary: Cumulative effects of anodal and priming cathodal tDCS on pegboard test performance and motor cortical excitability. Frontiers in Human Neuroscience, 2016, 10, 70.	1.0	1
51	Why a Comprehensive Understanding of Mental Workload through the Measurement of Neurovascular Coupling Is a Key Issue for Neuroergonomics?. Frontiers in Human Neuroscience, 2016, 10, 250.	1.0	24
52	Does a Combination of Virtual Reality, Neuromodulation and Neuroimaging Provide a Comprehensive Platform for Neurorehabilitation? – A Narrative Review of the Literature. Frontiers in Human Neuroscience, 2016, 10, 284.	1.0	119
53	Mitochondrial Coupling and Contractile Efficiency in Humans with High and Low V˙O2peaks. Medicine and Science in Sports and Exercise, 2016, 48, 811-821.	0.2	2
54	Influence of recovery time on strength during a testing protocol of knee. Journal De Traumatologie Du Sport, 2016, 33, 161-166.	0.1	0

#	Article	IF	Citations
55	NIRS-EEG joint imaging during transcranial direct current stimulation: Online parameter estimation with an autoregressive model. Journal of Neuroscience Methods, 2016, 274, 71-80.	1.3	41
56	A closed-loop BCI system for rehabilitation of the hemiplegic upper-limb: A performance study of the systems ability to detect intention of movement. Annals of Physical and Rehabilitation Medicine, 2016, 59, e88.	1.1	3
57	Effective Connectivity of Cortical Sensorimotor Networks During Finger Movement Tasks: A Simultaneous fNIRS, fMRI, EEG Study. Brain Topography, 2016, 29, 645-660.	0.8	94
58	Complex network analysis of resting-state fMRI of the brain., 2016, 2016, 3598-3601.		6
59	Cognitive functions and cerebral oxygenation changes during acute and prolonged hypoxic exposure. Physiology and Behavior, 2016, 164, 189-197.	1.0	54
60	Effects of Anodal High-Definition Transcranial Direct Current Stimulation on Bilateral Sensorimotor Cortex Activation During Sequential Finger Movements: An fNIRS Study. Advances in Experimental Medicine and Biology, 2016, 876, 351-359.	0.8	31
61	Commentaries on Viewpoint: A role for the prefrontal cortex in exercise tolerance and termination. Journal of Applied Physiology, 2016, 120, 467-469.	1.2	24
62	Effects of pre-exercise alkalosis on the decrease in $\$dot{V}O_{2}\$ V E^{M} O 2 at the end of all-out exercise. European Journal of Applied Physiology, 2016, 116, 85-95.	1.2	12
63	MACVIA-LR (FIGHTING CHRONIC DISEASES FOR ACTIVE AND HEALTHY AGEING IN LANGUEDOC-ROUSSILLON): A SUCCESS STORY OF THE EUROPEAN INNOVATION PARTNERSHIP ON ACTIVE AND HEALTHY AGEING. Journal of Frailty & Description of Frailty	0.8	8
64	Transcranial direct current stimulation induced modulation of cortical haemodynamics: A comparison between time-domain and continuous-wave functional near-infrared spectroscopy. Brain Stimulation, 2015, 8, 392-393.	0.7	4
65	CO2 Clamping, Peripheral and Central Fatigue during Hypoxic Knee Extensions in Men. Medicine and Science in Sports and Exercise, 2015, 47, 2513-2524.	0.2	26
66	Effects of Increasing Neuromuscular Electrical Stimulation Current Intensity on Cortical Sensorimotor Network Activation: A Time Domain fNIRS Study. PLoS ONE, 2015, 10, e0131951.	1.1	33
67	Editorial: Investigating the human brain and muscle coupling during whole-body challenging exercise. Frontiers in Physiology, 2015, 6, 285.	1.3	7
68	An adaptive accuracy-weighted ensemble for inter-subjects classification in brain-computer interfacing. , 2015, , .		5
69	A Framework for Online Inter-subjects Classification in Endogenous Brain-Computer Interfaces. Lecture Notes in Computer Science, 2015, , 98-107.	1.0	1
70	Opposite effects of hyperoxia on mitochondrial and contractile efficiency in human quadriceps muscles. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R724-R733.	0.9	8
71	Effects of ON and OFF subthalamic nucleus deep brain stimulation on cortical activation during finger movements tasks: a simultaneous fNIRS and EEG study. Brain Stimulation, 2015, 8, 393.	0.7	0
72	Expectations induced by natural-like temporal fluctuations are independent of attention decrement: Evidence from behavior and early visual evoked potentials. Neurolmage, 2015, 104, 278-286.	2.1	8

#	Article	IF	Citations
73	Adaptations of Motor Neural Structures' Activity to Lapses in Attention. Cerebral Cortex, 2015, 25, 66-74.	1.6	50
74	lpsilateral M1 transcranial direct current stimulation increases excitability of the contralateral M1 during an active motor task: Implications for stroke rehabilitation. Annals of Physical and Rehabilitation Medicine, 2015, 58, e1-e2.	1.1	5
75	Modulation of exercise-induced spinal loop properties in response to oxygen availability. European Journal of Applied Physiology, 2015, 115, 471-482.	1.2	13
76	Improved cerebral oxygenation response and executive performance as a function of cardiorespiratory fitness in older women: a fNIRS study. Frontiers in Aging Neuroscience, 2014, 6, 272.	1.7	52
77	Less Effort, Better Results: How Does Music Act on Prefrontal Cortex in Older Adults during Verbal Encoding? An fNIRS Study. Frontiers in Human Neuroscience, 2014, 8, 301.	1.0	49
78	Possibilities for examining the neural control of gait in humans with fNIRS. Frontiers in Physiology, 2014, 5, 204.	1.3	50
79	Cerebral Hemodynamic and Ventilatory Responses to Hypoxia, Hypercapnia, and Hypocapnia during 5 Days at 4,350 m. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 52-60.	2.4	30
80	Differences in hemispherical thalamo-cortical causality analysis during resting-state fMRI., 2014, 2014, 990-3.		1
81	The promise of Near-Infrared Spectroscopy (NIRS) for psychological research: A brief review. Annee Psychologique, 2014, 114, 537-569.	0.2	27
82	Similar scaling of contralateral and ipsilateral cortical responses during graded unimanual force generation. Neurolmage, 2014, 85, 471-477.	2.1	84
83	MACVIA-LR, Reference site of the European Innovation Partnership on Active and Healthy Ageing (EIP on) Tj ETQq	1 1 0.784 1.2	314 rgBT /
84	Living Lab Falls-MACVIA-LR: The falls prevention initiative of the European Innovation Partnership on Active and Healthy Ageing (EIP on AHA) in Languedoc-Roussillon. European Geriatric Medicine, 2014, 5, 416-425.	1.2	30
85	Graph-Based Transfer Learning for Managing Brain Signals Variability in NIRS-Based BCIs. Communications in Computer and Information Science, 2014, , 294-303.	0.4	2
86	Changes in Voluntary Activation Assessed by Transcranial Magnetic Stimulation during Prolonged Cycling Exercise. PLoS ONE, 2014, 9, e89157.	1.1	48
87	Towards a Near Infrared Spectroscopy-Based Estimation of Operator Attentional State. PLoS ONE, 2014, 9, e92045.	1.1	39
88	The promise of Near-Infrared Spectroscopy (NIRS) for psychological research: A brief review. Annee Psychologique, 2014, Vol. 114, 537-569.	0.2	0
89	Utilizing slope method as an alternative data analysis for functional near-infrared spectroscopy-derived cerebral hemodynamic responses. International Journal of Industrial Ergonomics, 2013, 43, 335-341.	1.5	24
90	Cerebral Cortex Activation Mapping upon Electrical Muscle Stimulation by 32-Channel Time-Domain Functional Near-Infrared Spectroscopy. Advances in Experimental Medicine and Biology, 2013, 789, 441-447.	0.8	7

#	Article	IF	CITATIONS
91	Muscle, Prefrontal, and Motor Cortex Oxygenation Profiles During Prolonged Fatiguing Exercise. Advances in Experimental Medicine and Biology, 2013, 789, 149-155.	0.8	29
92	Neuromuscular adaptations after a rehabilitation program in patients with chronic low back pain: case series (uncontrolled longitudinal study). BMC Musculoskeletal Disorders, 2013, 14, 277.	0.8	6
93	Multimodal integration of fNIRS, fMRI and EEG neuroimaging. Clinical Neurophysiology, 2013, 124, 2060-2062.	0.7	35
94	Prefrontal cortex activity during motor tasks with additional mental load requiring attentional demand: A near-infrared spectroscopy study. Neuroscience Research, 2013, 76, 156-162.	1.0	75
95	Prevalence of cardio-respiratory factors in the occurrence of the decrease in oxygen uptake during supra-maximal, constant-power exercise. SpringerPlus, 2013, 2, 651.	1.2	4
96	Tissue deoxygenation kinetics induced by prolonged hypoxic exposure in healthy humans at rest. Journal of Biomedical Optics, 2013, 18, 095002.	1.4	19
97	Promoting Motor Function by Exercising the Brain. Brain Sciences, 2013, 3, 101-122.	1.1	52
98	Comparison of causality analysis on simultaneously measured fMRI and NIRS signals during motor tasks. , 2013, 2013, 2628-31.		23
99	Multichannel time domain fNIRS mapping of cortical activation and superficial systemic responses during neuromuscular electrical stimulation. Proceedings of SPIE, 2013, , .	0.8	3
100	Does an Abdominal Strengthening Program Influence Leg Stiffness During Hopping Tasks?. Journal of Strength and Conditioning Research, 2013, 27, 2129-2133.	1.0	7
101	The effect of hypoxemia and exercise on acute mountain sickness symptoms. Journal of Applied Physiology, 2013, 114, 180-185.	1.2	21
102	NIRS-measured prefrontal cortex activity in neuroergonomics: strengths and weaknesses. Frontiers in Human Neuroscience, 2013, 7, 583.	1.0	48
103	Effects of Transcranial Direct Current Stimulation of the Motor Cortex on Prefrontal Cortex Activation During a Neuromuscular Fatigue Task: An fNIRS Study. Advances in Experimental Medicine and Biology, 2013, 789, 73-79.	0.8	53
104	Cerebral perturbations during exercise in hypoxia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R903-R916.	0.9	86
105	Time-dependent effect of acute hypoxia on corticospinal excitability in healthy humans. Journal of Neurophysiology, 2012, 108, 1270-1277.	0.9	38
106	Directionality analysis on functional magnetic resonance imaging during motor task using Granger Causality., 2012, 2012, 2287-90.		5
107	The slow components of phosphocreatine and pulmonary oxygen uptake can be dissociated during heavy exercise according to training status. Experimental Physiology, 2012, 97, 955-969.	0.9	6
108	Relationship Between Submaximal Handgrip Muscle Force and NIRS-Measured Motor Cortical Activation. Advances in Experimental Medicine and Biology, 2012, 737, 269-274.	0.8	17

#	Article	IF	CITATIONS
109	Evidence from neuroimaging to explore brain plasticity in humans during an ultra-endurance burden. BMC Medicine, 2012, 10, 171.	2.3	1
110	NIRS for Measuring Cerebral Hemodynamic Responses During Exercise. , 2012, , 335-349.		8
111	Commentaries on Viewpoint: Sacrificing economy to improve running performance—a reality in the ultramarathon?. Journal of Applied Physiology, 2012, 113, 510-512.	1.2	5
112	Comments on Point:Counterpoint: Hypobaric hypoxia induces/does not induce different responses from normobaric hypoxia. Journal of Applied Physiology, 2012, 112, 1788-1794.	1.2	34
113	Gas exchange measurements within a magnetic environment: Validation of a new system. Respiratory Physiology and Neurobiology, 2012, 182, 37-46.	0.7	5
114	Comparative determination of energy production rates and mitochondrial function using different ³¹ P MRS quantitative methods in sedentary and trained subjects. NMR in Biomedicine, 2011, 24, 425-438.	1.6	33
115	Degraded postural performance after muscle fatigue can be compensated by skin stimulation. Gait and Posture, 2011, 33, 686-689.	0.6	23
116	Vastus lateralis oxygenation dynamics during maximal fatiguing concentric and eccentric isokinetic muscle actions. Journal of Electromyography and Kinesiology, 2011, 21, 276-282.	0.7	25
117	Neuromuscular adaptations induced by a short rehabilitation program in chronic low back pain. Annals of Physical and Rehabilitation Medicine, 2011, 54, e262.	1.1	0
118	The Perceived Exertion to Regulate a Training Program in Young Women. Journal of Strength and Conditioning Research, 2011, 25, 220-224.	1.0	13
119	Commentaries on Viewpoint: The two-hour marathon: Who and when?. Journal of Applied Physiology, 2011, 110, 278-293.	1.2	25
120	Comments on Point:Counterpoint: Afferent feedback from fatigued locomotor muscles is/is not an important determinant of endurance exercise performance. Journal of Applied Physiology, 2010, 108, 458-468.	1.2	26
121	Neural and muscular adjustments following repeated running sprints. European Journal of Applied Physiology, 2010, 109, 1027-1036.	1.2	78
122	Redetermination of the optimal stimulation intensity modifies resting Hâ€reflex recovery after a sustained moderateâ€ntensity muscle contraction. Muscle and Nerve, 2010, 41, 642-650.	1.0	14
123	NIRS in ergonomics: Its application in industry for promotion of health and human performance at work. International Journal of Industrial Ergonomics, 2010, 40, 185-189.	1.5	22
124	Application of near-infrared spectroscopy in preventing work-related musculoskeletal disorders: Brief review. International Journal of Industrial Ergonomics, 2010, 40, 180-184.	1.5	12
125	L'état énergétique du muscle fatigué vu par la résonance magnétique nucléaire. Science Et M 2010, , 13-19.	otricite, 0.3	1
126	L'oxygénation cérébrale mesurée par spectroscopie dans le proche infrarouge comme témoin des ajustements de la commande motrice centrale. Science Et Motricite, 2010, , 55-60.	0.3	1

#	Article	IF	CITATIONS
127	Influence of back muscle fatigue on lumbar reflex adaptation during sudden external force perturbations. Journal of Electromyography and Kinesiology, 2010, 20, 426-432.	0.7	23
128	MAXIMAL POWER, BUT NOT FATIGABILITY, IS GREATER DURING REPEATED SPRINTS PERFORMED IN THE AFTERNOON. Chronobiology International, 2010, 27, 855-864.	0.9	54
129	Comments on Point:Counterpoint: The kinetics of oxygen uptake during muscular exercise do/do not manifest time-delayed phases. Journal of Applied Physiology, 2009, 107, 1669-1675.	1.2	6
130	Altitude-Induced Changes in Muscle Contractile Properties. High Altitude Medicine and Biology, 2009, 10, 175-182.	0.5	41
131	Reproducibility assessment of metabolic variables characterizing muscle energetics in Vivo: A ³¹ Pâ€MRS study. Magnetic Resonance in Medicine, 2009, 62, 840-854.	1.9	63
132	Factors responsible for force steadiness impairment with fatigue. Muscle and Nerve, 2009, 40, 1019-1032.	1.0	38
133	Does oxidative capacity affect energy cost? An in vivo MR investigation of skeletal muscle energetics. European Journal of Applied Physiology, 2009, 106, 229-242.	1.2	17
134	Effects of a prior highâ€intensity kneeâ€extension exercise on muscle recruitment and energy cost: a combined local and global investigation in humans. Experimental Physiology, 2009, 94, 704-719.	0.9	33
135	Decrease in cerebral oxygenation influences central motor output in humans. Acta Physiologica, 2009, 196, 279-281.	1.8	7
136	Recurrence quantification analysis of surface electromyographic signal: Sensitivity to potentiation and neuromuscular fatigue. Journal of Neuroscience Methods, 2009, 177, 73-79.	1.3	45
137	Adaptation of motor behavior to preserve task success in the presence of muscle fatigue. Neuroscience, 2009, 161, 773-786.	1.1	28
138	Effect of Severe Hypoxia on Prefrontal Cortex and Muscle Oxygenation Responses at Rest and During Exhaustive Exercise. Advances in Experimental Medicine and Biology, 2009, 645, 329-334.	0.8	40
139	Muscle oxygenation and intramuscular pressure related to posture and load in back muscles. Spine Journal, 2009, 9, 754-759.	0.6	15
140	Time Course of Postactivation Potentiation During Intermittent Submaximal Fatiguing Contractions in Endurance- and Power-Trained Athletes. Journal of Strength and Conditioning Research, 2009, 23, 1456-1464.	1.0	25
141	Commentaries on Viewpoint: Evidence that reduced skeletal muscle recruitment explains the lactate paradox during exercise at high altitude. Journal of Applied Physiology, 2009, 106, 739-744.	1.2	5
142	Diurnal Increase In Muscle Power Is Not Sustained For Repeated Sprints Medicine and Science in Sports and Exercise, 2009, 41, 17.	0.2	0
143	The role of cocontraction in the impairment of movement accuracy with fatigue. Experimental Brain Research, 2008, 185, 151-156.	0.7	78
144	Accurate work-rate measurements during in vivo MRS studies of exercising human quadriceps. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2008, 21, 227-235.	1.1	38

#	Article	IF	Citations
145	Modulation in voluntary neural drive in relation to muscle soreness. European Journal of Applied Physiology, 2008, 102, 439-446.	1.2	44
146	Muscular fatigue increases signal-dependent noise during isometric force production. Neuroscience Letters, 2008, 437, 154-157.	1.0	39
147	Relationship between limbs anthropometrical characteristics and energy expenditure during arm cranking and leg cycling unloaded exercises. Science and Sports, 2008, 23, 145-148.	0.2	0
148	Non-invasive NIR spectroscopy of human brain function during exercise. Methods, 2008, 45, 289-299.	1.9	261
149	Comparison of Heart Rate Deflection and Ventilatory Threshold During a Field Cross-Country Roller-Skiing Test. Journal of Strength and Conditioning Research, 2008, 22, 1977-1984.	1.0	11
150	Compression Garments: Evidence for their Physiological Effects (P208)., 2008,, 319-328.		9
151	Exertion during uphill, level and downhill walking with and without hiking poles. Journal of Sports Science and Medicine, 2008, 7, 32-8.	0.7	18
152	Failed Excitability of Spinal Motoneurons Induced by Prolonged Running Exercise. Journal of Neurophysiology, 2007, 97, 596-603.	0.9	75
153	Effects of a Supplementation during Exercise and Recovery. International Journal of Sports Medicine, 2007, 28, 703-712.	0.8	10
154	Paced Breathing in Roller-Ski Skating: Effects on Metabolic Rate and Poling Forces. International Journal of Sports Physiology and Performance, 2007, 2, 46-57.	1.1	2
155	Muscle Deoxygenation and Neural Drive to the Muscle during Repeated Sprint Cycling. Medicine and Science in Sports and Exercise, 2007, 39, 268-274.	0.2	140
156	Neuro-mechanical and chemical influences on locomotor respiratory coupling in humans. Respiratory Physiology and Neurobiology, 2007, 155, 128-136.	0.7	20
157	Compression élastique externe etÂfonction musculaire chezÂl'homme. Science and Sports, 2007, 22, 3-13.	0.2	7
158	Effect of prior heavy exercise on muscle deoxygenation kinetics at the onset of subsequent heavy exercise. European Journal of Applied Physiology, 2007, 99, 677-684.	1.2	12
159	Cycling performance and mechanical variables using a new prototype chainring. European Journal of Applied Physiology, 2007, 101, 721-726.	1.2	6
160	Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise. European Journal of Applied Physiology, 2007, 102, 153-163.	1.2	194
161	No influence of hypoxia on coordination between respiratory and locomotor rhythms during rowing at moderate intensity. Journal of Sports Science and Medicine, 2007, 6, 526-31.	0.7	6
162	Is the VO2 slow component in heavy arm-cranking exercise associated with recruitment of type II muscle fibers as assessed by an increase in surface EMG?. Applied Physiology, Nutrition and Metabolism, 2006, 31, 414-422.	0.9	15

#	Article	IF	CITATIONS
163	The role of engineering in fatigue reduction during human locomotion â€" a review. Sports Engineering, 2006, 9, 209-220.	0.5	14
164	Degree of Coordination between Breathing and Rhythmic Arm Movements During Hand Rim Wheelchair Propulsion. International Journal of Sports Medicine, 2006, 27, 67-74.	0.8	10
165	Oxygen Uptake Kinetics During Heavy Submaximal Exercise: Effect of Sickle Cell Trait With or Without Alpha-Thalassemia. International Journal of Sports Medicine, 2006, 27, 517-525.	0.8	19
166	Aerobic Energy Cost and Sensation Responses During Submaximal Running Exercise - Positive Effects of Wearing Compression Tights. International Journal of Sports Medicine, 2006, 27, 373-378.	0.8	140
167	Métabolisme énergétique et performance sportive chez les porteurs du trait drépanocytaireÂ: peut-on parler d'intolérance à l'effortÂ?. Staps, 2006, n o 74, 23-39.	0.0	O
168	Influence of posture on pulmonary o2 uptake kinetics, muscle deoxygenation and myolectrical activity during heavy-intensity exercise. Journal of Sports Science and Medicine, 2006, 5, 254-65.	0.7	15
169	Monocarboxylate transporters, blood lactate removal after supramaximal exercise, and fatigue indexes in humans. Journal of Applied Physiology, 2005, 98, 804-809.	1.2	112
170	Oxygen Uptake Response to an 800-m Running Race. International Journal of Sports Medicine, 2005, 26, 268-273.	0.8	26
171	Oxygen Uptake Kinetics During Moderate and Heavy Intensity Exercise in Humans: The Influence of Hypoxia and Training Status. International Journal of Sports Medicine, 2005, 26, 356-362.	0.8	19
172	Effect of Endurance Training on Different Mechanical Efficiency Indices During Submaximal Cycling in Subjects Unaccustomed to Cycling. Applied Physiology, Nutrition, and Metabolism, 2005, 30, 520-528.	1.7	13
173	Overall increase in heart rate variability after the Square-Wave Endurance Exercise Test training. Science and Sports, 2005, 20, 83-90.	0.2	3
174	Evaluation of Fitness Level by the Oxygen Uptake Efficiency Slope After a Short-Term Intermittent Endurance Training. International Journal of Sports Medicine, 2004, 25, 85-91.	0.8	23
175	Influence of repeated isometric contractions on muscle deoxygenation and pulmonary oxygen uptake kinetics in humans. Clinical Physiology and Functional Imaging, 2004, 24, 229-236.	0.5	14
176	Quantitative Poincar;½ plot analysis of heart rate variability: effect of endurance training. European Journal of Applied Physiology, 2004, 91, 79-87.	1.2	159
177	Decrease in heart rate variability with overtraining: assessment by the Poincare plot analysis. Clinical Physiology and Functional Imaging, 2004, 24, 10-18.	0.5	188
178	and EMG Activity Kinetics During Moderate and Severe Constant Work Rate Exercise in Trained Cyclists. Applied Physiology, Nutrition, and Metabolism, 2004, 29, 758-772.	1.7	16
179	Dynamic Responses of Oxygen Uptake at the Onset and End of Moderate and Heavy Exercise in Trained Subjects. Applied Physiology, Nutrition, and Metabolism, 2004, 29, 32-44.	1.7	12
180	Relationships between maximal muscle oxidative capacity and blood lactate removal after supramaximal exercise and fatigue indexes in humans. Journal of Applied Physiology, 2004, 97, 2132-2138.	1.2	106

#	Article	IF	CITATIONS
181	The effect of prolonged submaximal exercise on gas exchange kinetics and ventilation during heavy exercise in humans. European Journal of Applied Physiology, 2003, 89, 587-594.	1.2	15
182	Faster oxygen uptake kinetics at the onset of submaximal cycling exercise following 4�weeks recombinant human erythropoietin (r-HuEPO) treatment. Pflugers Archiv European Journal of Physiology, 2003, 447, 231-238.	1.3	45
183	Internet-based image database for atherosclerosis research. International Congress Series, 2003, 1256, 1301.	0.2	1
184	Cardiovascular and Oxygen Uptake Kinetics During Sequential Heavy Cycling Exercises. Applied Physiology, Nutrition, and Metabolism, 2003, 28, 283-298.	1.7	26
185	Dynamic Responses of O2 Uptake at the Onset and End of Exercise in Trained Subjects. Applied Physiology, Nutrition, and Metabolism, 2003, 28, 630-641.	1.7	10
186	Lipolysis of triglyceride-rich lipoproteins generates PPAR ligands: Evidence for an antiinflammatory role for lipoprotein lipase. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2730-2735.	3.3	229
187	Oxygen uptake kinetics during two bouts of heavy cycling separated by fatiguing sprint exercise in humans. Journal of Applied Physiology, 2003, 94, 533-541.	1.2	86
188	Interpreting V˙o 2 kinetics in heavy exercise revisited. Journal of Applied Physiology, 2003, 94, 2548-2550.	1.2	0
189	Physiological and Metabolic Responses of Triathletes to a Simulated 30-min Time-Trial in Cycling at Self-Selected Intensity. International Journal of Sports Medicine, 2003, 24, 138-143.	0.8	15
190	Does the Mechanical Work in Running Change during the &OV0312O2 Slow Component?. Medicine and Science in Sports and Exercise, 2003, 35, 50-57.	0.2	28
191	Relationships Between Aerobic Energy Cost, Performance and Kinematic Parameters in Roller Ski Skating - Aerobic Energy Cost of Roller Ski Skating International Journal of Sports Medicine, 2002, 23, 191-195.	0.8	25
192	Decrease in Oxygen Uptake at the End of a High-Intensity Submaximal Running in Humans. International Journal of Sports Medicine, 2002, 23, 298-304.	0.8	15
193	Muscular Efficiency During Arm Cranking and Wheelchair Exercise: A Comparison. International Journal of Sports Medicine, 2002, 23, 408-414.	0.8	27
194	Chute de la consommation d'oxygÃ"ne à la fin d'un exercice exhaustif chez des coureurs à pied entraıÌ,nés. Science and Sports, 2002, 17, 38-40.	0.2	0
195	Déterminants des différentes phases de la cinétique de la consommation d'oxygène chez l'homme Science and Sports, 2002, 17, 220-233.	^{2.} 0.2	3
196	Field Testing of in Cross-Country Skiers With Portable Breath-by-Breath System. Applied Physiology, Nutrition, and Metabolism, 2001, 26, 1-11.	1.7	48
197	Comparison of oxygen uptake kinetics during concentric and eccentric cycle exercise. Journal of Applied Physiology, 2001, 91, 2135-2142.	1.2	138
198	Muscle chemoreflex elevates muscle blood flow and O2 uptake at exercise onset in nonischemic human forearm. Journal of Applied Physiology, 2001, 91, 2010-2016.	1.2	31

#	ARTICLE	lF	CITATIONS
199	Severe Hypercholesterolemia, Hypertriglyceridemia, and Atherosclerosis in Mice Lacking Both Leptin and the Low Density Lipoprotein Receptor. Journal of Biological Chemistry, 2001, 276, 37402-37408.	1.6	194
200	CHEMOREFLEX FROM LEG ELEVATES MUSCLE BLOOD FLOW AND OXYGEN UPTAKE AT ONSET OF FOREARM EXERCISE. Medicine and Science in Sports and Exercise, 2001, 33, S327.	0.2	0
201	Stretch-Shortening Cycle in Roller Ski Skating: Effects of Speed. Journal of Applied Biomechanics, 2000, 16, 264-275.	0.3	4
202	Absence of ACAT-1 Attenuates Atherosclerosis but Causes Dry Eye and Cutaneous Xanthomatosis in Mice with Congenital Hyperlipidemia. Journal of Biological Chemistry, 2000, 275, 21324-21330.	1.6	163
203	Sterol Regulatory Element-binding Protein-1 Is Regulated by Glucose at the Transcriptional Level. Journal of Biological Chemistry, 2000, 275, 31069-31077.	1.6	127
204	Embryonic Lethality and Defective Neural Tube Closure in Mice Lacking Squalene Synthase. Journal of Biological Chemistry, 1999, 274, 30843-30848.	1.6	114
205	Overexpressed lipoprotein lipase protects against atherosclerosis in apolipoprotein E knockout mice. Journal of Lipid Research, 1999, 40, 1677-1685.	2.0	105
206	External loading does not change energy cost and mechanics of rollerski skating. European Journal of Applied Physiology, 1998, 78, 276-282.	1.2	9
207	Stretch-Shortening Cycle in Roller Ski Skating: Effects of Technique. International Journal of Sports Medicine, 1998, 19, 513-520.	0.8	28
208	Efficiency of Vibrational Energy Dissipation by Moving Shot. Journal of Structural Engineering, 1993, 119, 2642-2652.	1.7	42
209	Graduated Compression Stockings and Delayed Onset Muscle Soreness (P105)., 0,, 547-554.		4
210	Combining electrophysiological metrics in assessing changes in working memory load. Frontiers in Human Neuroscience, $0,12,.$	1.0	0