
NatÃ;lia M Alves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6578456/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adhesive and biodegradable membranes made of sustainable catechol-functionalized marine collagen and chitosan. Colloids and Surfaces B: Biointerfaces, 2022, 213, 112409.	5.0	20
2	<scp>3D</scp> â€printed cryomilled poly(εâ€caprolactone)/graphene composite scaffolds for bone tissue regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 961-972.	3.4	20
3	Polymeric biomaterials inspired by marine mussel adhesive proteins. Reactive and Functional Polymers, 2021, 159, 104802.	4.1	12
4	Spin-coated freestanding films for biomedical applications. Journal of Materials Chemistry B, 2021, 9, 3778-3799.	5.8	38
5	3D printing of graphene-based polymeric nanocomposites for biomedical applications. Functional Composite Materials, 2021, 2, .	1.4	26
6	Poly(Lactic Acid)/Graphite Nanoplatelet Nanocomposite Filaments for Ligament Scaffolds. Nanomaterials, 2021, 11, 2796.	4.1	7
7	Layerâ€byâ€layer films based on catecholâ€modified polysaccharides produced by dip―and spinâ€coating onto different substrates. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1412-1427.	3.4	15
8	Spin-Coated Polysaccharide-Based Multilayered Freestanding Films with Adhesive and Bioactive Moieties. Molecules, 2020, 25, 840.	3.8	16
9	Biodegradable polymer nanocomposites for ligament/tendon tissue engineering. Journal of Nanobiotechnology, 2020, 18, 23.	9.1	91
10	Bioactive and adhesive properties of multilayered coatings based on catechol-functionalized chitosan/hyaluronic acid and bioactive glass nanoparticles. International Journal of Biological Macromolecules, 2020, 157, 119-134.	7.5	25
11	Tissue engineering and regenerative medicine research - how can it contribute to fight future pandemics?. , 2020, , 389-416.		1
12	Antibacterial free-standing polysaccharide composite films inspired by the sea. International Journal of Biological Macromolecules, 2019, 133, 933-944.	7.5	19
13	Optimization of silver-containing bioglass nanoparticles envisaging biomedical applications. Materials Science and Engineering C, 2019, 94, 161-168.	7.3	38
14	Adhesive free-standing multilayer films containing sulfated levan for biomedical applications. Acta Biomaterialia, 2018, 69, 183-195.	8.3	55
15	Nanostructured Biopolymer/Fewâ€Layer Graphene Freestanding Films with Enhanced Mechanical and Electrical Properties. Macromolecular Materials and Engineering, 2018, 303, 1700316.	3.6	6
16	Novel Antibacterial and Bioactive Silicate Glass Nanoparticles for Biomedical Applications. Advanced Engineering Materials, 2018, 20, 1700855.	3.5	7
17	Grapheneâ€polymer nanocomposites for biomedical applications. Polymers for Advanced Technologies, 2018, 29, 687-700.	3.2	70
18	Nacre-inspired nanocomposites produced using layer-by-layer assembly: Design strategies and biomedical applications. Materials Science and Engineering C, 2017, 76, 1263-1273.	7.3	32

#	Article	IF	CITATIONS
19	Biomedical films of graphene nanoribbons and nanoflakes with natural polymers. RSC Advances, 2017, 7, 27578-27594.	3.6	15
20	High performance free-standing films by layer-by-layer assembly of graphene flakes and ribbons with natural polymers. Journal of Materials Chemistry B, 2016, 4, 7718-7730.	5.8	13
21	Biomimetic polysaccharide/bioactive glass nanoparticles multilayer membranes for guided tissue regeneration. RSC Advances, 2016, 6, 75988-75999.	3.6	28
22	Antibacterial bioadhesive layer-by-layer coatings for orthopedic applications. Journal of Materials Chemistry B, 2016, 4, 5385-5393.	5.8	46
23	Chitosan nanocomposites based on distinct inorganic fillers for biomedical applications. Science and Technology of Advanced Materials, 2016, 17, 626-643.	6.1	66
24	Adhesive Bioactive Coatings Inspired by Sea Life. Langmuir, 2016, 32, 560-568.	3.5	34
25	pH Responsiveness of Multilayered Films and Membranes Made of Polysaccharides. Langmuir, 2015, 31, 11318-11328.	3.5	58
26	Homogeneous poly(L-lactic acid)/chitosan blended films. Polymers for Advanced Technologies, 2014, 25, 1492-1500.	3.2	4
27	Inclusion complexes of α-cyclodextrins with poly(d,l-lactic acid): structural, characterization, and glass transition dynamics. Colloid and Polymer Science, 2014, 292, 863-871.	2.1	9
28	Confinement Effects on the Dynamic Behavior of Poly(<scp>d</scp> , <scp>l</scp> -lactic Acid) upon Incorporation in α-Cyclodextrin. Journal of Physical Chemistry B, 2014, 118, 6972-6981.	2.6	8
29	Nanostructured Polymeric Coatings Based on Chitosan and Dopamineâ€Modified Hyaluronic Acid for Biomedical Applications. Small, 2014, 10, 2459-2469.	10.0	163
30	Cell interactions with superhydrophilic and superhydrophobic surfaces. Journal of Adhesion Science and Technology, 2014, 28, 843-863.	2.6	123
31	Biomineralization in chitosan/Bioglass® composite membranes under different dynamic mechanical conditions. Materials Science and Engineering C, 2013, 33, 4480-4483.	7.3	10
32	Development of new poly(ϵ-caprolactone)/chitosan films. Polymer International, 2013, 62, 1425-1432.	3.1	3
33	Chitosan membranes containing micro or nano-size bioactive glass particles: evolution of biomineralization followed by in situ dynamic mechanical analysis. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 20, 173-183.	3.1	98
34	Membranes of poly(<scp>dl</scp> -lactic acid)/Bioglass [®] with asymmetric bioactivity for biomedical applications. Journal of Bioactive and Compatible Polymers, 2012, 27, 429-440.	2.1	12
35	Cell behaviour in new poly(l-lactic acid) films with crystallinity gradients. Materials Letters, 2012, 87, 105-108.	2.6	10
36	Bioactivity and Viscoelastic Characterization of Chitosan/Bioglass® Composite Membranes. Macromolecular Bioscience, 2012, 12, 1106-1113.	4.1	30

#	Article	IF	CITATIONS
37	Preparation and Characterization of New Biodegradable Films Made from Poly(L-Lactic Acid) and Chitosan Blends Using a Common Solvent. Journal of Macromolecular Science - Physics, 2011, 50, 1121-1129.	1.0	4
38	Dual Responsive Nanostructured Surfaces for Biomedical Applications. Langmuir, 2011, 27, 8415-8423.	3.5	44
39	Chemical modification of bioinspired superhydrophobic polystyrene surfaces to control cell attachment/proliferation. Soft Matter, 2011, 7, 8932.	2.7	100
40	Chitosan/Poly(É›-caprolactone) blend scaffolds for cartilage repair. Biomaterials, 2011, 32, 1068-1079.	11.4	204
41	Crosslink Effect and Albumin Adsorption onto Chitosan/Alginate Multilayered Systems: An in situ QCMâ€Ð Study. Macromolecular Bioscience, 2010, 10, 1444-1455.	4.1	69
42	New poly(ε-caprolactone)/chitosan blend fibers for tissue engineering applications. Acta Biomaterialia, 2010, 6, 418-428.	8.3	100
43	Nanostructured self-assembled films containing chitosan fabricated at neutral pH. Carbohydrate Polymers, 2010, 80, 570-573.	10.2	52
44	Controlling Cell Behavior Through the Design of Polymer Surfaces. Small, 2010, 6, 2208-2220.	10.0	289
45	Designing biomaterials based on biomineralization of bone. Journal of Materials Chemistry, 2010, 20, 2911.	6.7	144
46	New Thermo-responsive Hydrogels Based on Poly (N-isopropylacrylamide)/ Hyaluronic Acid Semi-interpenetrated Polymer Networks: Swelling Properties and Drug Release Studies. Journal of Bioactive and Compatible Polymers, 2010, 25, 169-184.	2.1	53
47	Nanostructured Multilayer Coatings Combining Chitosan with Bioactive Glass Nanoparticles. Journal of Nanoscience and Nanotechnology, 2009, 9, 1741-1748.	0.9	60
48	Stimuliâ€Responsive Thin Coatings Using Elastin‣ike Polymers for Biomedical Applications. Advanced Functional Materials, 2009, 19, 3210-3218.	14.9	83
49	Bioinspired superhydrophobic poly(<scp>L</scp> â€lactic acid) surfaces control bone marrow derived cells adhesion and proliferation. Journal of Biomedical Materials Research - Part A, 2009, 91A, 480-488.	4.0	94
50	Self Assembling and Crosslinking of Polyelectrolyte Multilayer Films of Chitosan and Alginate Studied by QCM and IR Spectroscopy. Macromolecular Bioscience, 2009, 9, 776-785.	4.1	117
51	Chitosan coated alginate beads containing poly(<i>N</i> â€isopropylacrylamide) for dualâ€stimuliâ€responsive drug release. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 84B, 595-603.	3.4	118
52	pH-Responsive biomineralization onto chitosan grafted biodegradable substrates. Journal of Materials Chemistry, 2008, 18, 2493.	6.7	49
53	Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. International Journal of Biological Macromolecules, 2008, 43, 401-414.	7.5	672
54	Towards bioinspired superhydrophobic poly(L-lactic acid) surfaces using phase inversion-based methods. Bioinspiration and Biomimetics, 2008, 3, 034003.	2.9	34

#	Article	IF	CITATIONS
55	In vitro monitoring of surface mechanical properties of poly(L-lactic acid) using microhardness. Journal of Applied Polymer Science, 2007, 105, 3860-3864.	2.6	8
56	Thermally Responsive Biomineralization on Biodegradable Substrates. Advanced Functional Materials, 2007, 17, 3312-3318.	14.9	64
57	Microhardness of starch based biomaterials in simulated physiological conditions. Acta Biomaterialia, 2007, 3, 69-76.	8.3	17
58	Glass transition of semi-crystalline PLLA with different morphologies as studied by dynamic mechanical analysis. Colloid and Polymer Science, 2007, 285, 575-580.	2.1	44
59	Drug Release of pH/Temperature-Responsive Calcium Alginate/Poly(N-isopropylacrylamide) Semi-IPN Beads. Macromolecular Bioscience, 2006, 6, 358-363.	4.1	150
60	Glass transition dynamics and structural relaxation of PLLA studied by DSC: Influence of crystallinity. Polymer, 2005, 46, 8258-8265.	3.8	139
61	Enthalpy relaxation studies in polymethyl methacrylate networks with different crosslinking degrees. Polymer, 2005, 46, 491-504.	3.8	65
62	Study of the Molecular Mobility in Polymers with the Thermally Stimulated Recovery Technique—A Review. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2005, 45, 99-124.	2.2	5
63	Molecular dynamics in polymeric systems. E-Polymers, 2004, 4, .	3.0	1
64	Morphology and mechanical properties of injection molded poly(ethylene terephthalate). Polymer Engineering and Science, 2004, 44, 2174-2184.	3.1	42
65	Departure from the Vogel behaviour in the glass transition—thermally stimulated recovery, creep and dynamic mechanical analysis studies. Polymer, 2004, 45, 1007-1017.	3.8	51
66	Analysis of the thermal environment inside the furnace of a dynamic mechanical analyser. Polymer Testing, 2003, 22, 471-481.	4.8	11
67	The Dynamics of the Glass Transition in a Semicrystalline PET Studied by Mechanical and Dielectric Spectroscopic Methods. Defect and Diffusion Forum, 2002, 206-207, 131-134.	0.4	5
68	Influence of experimental variables on thermally stimulated recovery results: analysis of simulations and real data on a polymeric system. Polymer International, 2002, 51, 434-442.	3.1	3
69	Molecular mobility in polymers studied with thermally stimulated recovery. II. Study of the glass transition of a semicrystalline PET and comparison with DSC and DMA results. Polymer, 2002, 43, 3627-3633.	3.8	39
70	Glass transition and structural relaxation in semi-crystalline poly(ethylene terephthalate): a DSC study. Polymer, 2002, 43, 4111-4122.	3.8	146
71	Molecular mobility in polymers studied with thermally stimulated recovery. Magyar Apróvad Közlemények, 2002, 70, 633-649.	1.4	10
72	Molecular mobility in a thermoset as seen by TSR and DMA near Tg. Materials Research Innovations, 2001, 4, 170-178.	2.3	13

#	Article	IF	CITATIONS
73	Structural relaxation in a polyester thermoset as seen by thermally stimulated recovery. Polymer, 2001, 42, 4173-4180.	3.8	18
74	Temperature correction of dynamic mechanical and thermomechanical analysers during heating, cooling and isothermal experiments. Thermochimica Acta, 2000, 346, 133-145.	2.7	8
75	Comparing dielectric measurements on poly(ethylene terephthalate) at constant heating rates with isothermal measurements. Polymer, 1999, 40, 2675-2679.	3.8	5
76	Molecular motions in a polycarbonate composite as studied by thermally stimulated recovery and dynamic mechanical analysis. Macromolecular Symposia, 1999, 148, 437-454.	0.7	13
77	Bioactivity and Viscoelastic Characterization in Physiological Simulated Conditions of Chitosan/Bioglass® Composite Membranes. Materials Science Forum, 0, 636-637, 26-30.	0.3	4
78	The Potential of Beeswax Colloidal Emulsion/Films for Hydrophobization of Natural Fibers Prior to NTRM Manufacturing. Key Engineering Materials, 0, 916, 82-90.	0.4	2