Frank J Lagerwaard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6577919/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnetic resonance imaging-guided radiotherapy for intermediate- and high-risk prostate cancer: Trade-off between planning target volume margin and online plan adaption. Physics and Imaging in Radiation Oncology, 2022, 23, 92-96.	1.2	4
2	Magnetic Resonance-guided Stereotactic Radiotherapy for Localized Prostate Cancer: Final Results on Patient-reported Outcomes of a Prospective Phase 2 Study. European Urology Oncology, 2021, 4, 628-634.	2.6	46
3	Dose accumulation for personalized stereotactic MR-guided adaptive radiation therapy in prostate cancer. Radiotherapy and Oncology, 2021, 157, 197-202.	0.3	12
4	Impact of daily plan adaptation on organ-at-risk normal tissue complication probability for adrenal lesions undergoing stereotactic ablative radiation therapy. Radiotherapy and Oncology, 2021, 163, 14-20.	0.3	10
5	Stereotactic MR-guided adaptive radiation therapy for peripheral lung tumors. Radiotherapy and Oncology, 2020, 144, 46-52.	0.3	64
6	The Role of Daily Adaptive Stereotactic MR-Guided Radiotherapy for Renal Cell Cancer. Cancers, 2020, 12, 2763.	1.7	30
7	Clinical Outcomes of Stereotactic MR-Guided Adaptive Radiation Therapy for High-Risk Lung Tumors. International Journal of Radiation Oncology Biology Physics, 2020, 107, 270-278.	0.4	71
8	Cost-effectiveness of stereotactic body radiation therapy versus video assisted thoracic surgery in medically operable stage I non-small cell lung cancer: A modeling study. Lung Cancer, 2020, 141, 89-96.	0.9	15
9	The clinical introduction of MR-guided radiation therapy from a RTT perspective. Clinical and Translational Radiation Oncology, 2019, 18, 140-145.	0.9	25
10	The role of biological dose-escalation for pancreatic cancer. Clinical and Translational Radiation Oncology, 2019, 18, 128-130.	0.9	31
11	Evaluation of the Hippocampal Normal Tissue Complication Model in a Prospective Cohort of Low Grade Glioma Patients—An Analysis Within the EORTC 22033 Clinical Trial. Frontiers in Oncology, 2019, 9, 991.	1.3	24
12	A Prospective Single-Arm Phase 2 Study of Stereotactic Magnetic Resonance Guided Adaptive Radiation Therapy for Prostate Cancer: Early Toxicity Results. International Journal of Radiation Oncology Biology Physics, 2019, 105, 1086-1094.	0.4	127
13	End-to-end empirical validation of dose accumulation in MRI-guided adaptive radiotherapy for prostate cancer using an anthropomorphic deformable pelvis phantom. Radiotherapy and Oncology, 2019, 141, 200-207.	0.3	24
14	Patient-reported Outcomes After the Treatment of Early Stage Non–small-cell Lung Cancer With Stereotactic Body Radiotherapy Compared With Surgery. Clinical Lung Cancer, 2019, 20, 370-377.e3.	1.1	10
15	Role of On-Table Plan Adaptation in MR-Guided Ablative Radiation Therapy for Central Lung Tumors. International Journal of Radiation Oncology Biology Physics, 2019, 104, 933-941.	0.4	75
16	Clinical implementation of magnetic resonance imaging guided adaptive radiotherapy for localized prostate cancer. Physics and Imaging in Radiation Oncology, 2019, 9, 69-76.	1.2	128
17	Identification of patients with locally advanced pancreatic cancer benefitting from plan adaptation in MR-guided radiation therapy. Radiotherapy and Oncology, 2019, 132, 16-22.	0.3	37
18	Differences in Longitudinal Health Utility between Stereotactic Body Radiation Therapy and Surgery in Stage I Non–Small Cell Lung Cancer. Journal of Thoracic Oncology, 2018, 13, 689-698.	0.5	23

#	Article	IF	CITATIONS
19	Role of Daily Plan Adaptation in MR-Guided Stereotactic Ablative Radiation Therapy for Adrenal Metastases. International Journal of Radiation Oncology Biology Physics, 2018, 102, 426-433.	0.4	66
20	SBRT for pancreatic cancer: In regard of Bohoudi et al Radiotherapy and Oncology, 2018, 127, 511-512.	0.3	1
21	Earliest radiological progression in glioblastoma by multidisciplinary consensus review. Journal of Neuro-Oncology, 2018, 139, 591-598.	1.4	4
22	MR-guided Gated Stereotactic Radiation Therapy Delivery for Lung, Adrenal, and Pancreatic Tumors: A Geometric Analysis. International Journal of Radiation Oncology Biology Physics, 2018, 102, 858-866.	0.4	118
23	Individualized early death and long-term survival prediction after stereotactic radiosurgery for brain metastases of non-small cell lung cancer: Two externally validated nomograms. Radiotherapy and Oncology, 2017, 123, 189-194.	0.3	29
24	Current status and perspectives of interventional clinical trials for glioblastoma – analysis of ClinicalTrials.gov. Radiation Oncology, 2017, 12, 1.	1.2	87
25	HOUT-14. TIME TO PROGRESSION AND VOLUME AT PROGRESSION DEPEND ON DEFINITION OF PROGRESSION IN GLIOBLASTOMA. Neuro-Oncology, 2017, 19, vi108-vi109.	0.6	0
26	Prophylactic cranial irradiation (PCI) versus observation in radically treated stage III non-small cell lung cancer (NSCLC): A randomized phase III NVALT11 study Journal of Clinical Oncology, 2017, 35, 8502-8502.	0.8	5
27	Whole brain radiotherapy for brain metastases from non-small cell lung cancer: the end of an era?. Journal of Thoracic Disease, 2016, 8, E1525-E1527.	0.6	3
28	Salvage surgery for local failures after stereotactic ablative radiotherapy for early stage non-small cell lung cancer. Radiation Oncology, 2016, 11, 131.	1.2	19
29	Isotoxic radiosurgery planning for brain metastases. Radiotherapy and Oncology, 2016, 120, 253-257.	0.3	21
30	A critical review of recent developments in radiotherapy for non-small cell lung cancer. Radiation Oncology, 2016, 11, 115.	1.2	112
31	ESTRO-ACROP guideline "target delineation of glioblastomas― Radiotherapy and Oncology, 2016, 118, 35-42.	0.3	286
32	Predicting Overall Survival After Stereotactic Ablative Radiation Therapy in Early-Stage Lung Cancer: Development and External Validation of the Amsterdam Prognostic Model. International Journal of Radiation Oncology Biology Physics, 2015, 93, 82-90.	0.4	28
33	Patterns of Disease Recurrence after SABR for Early Stage Non–Small-Cell Lung Cancer: Optimizing Follow-Up Schedules for Salvage Therapy. Journal of Thoracic Oncology, 2015, 10, 1195-1200.	0.5	54
34	Comparison of clinical outcome of stage I non-small cell lung cancer treated surgically or with stereotactic radiotherapy: Results from propensity score analysis. Lung Cancer, 2015, 87, 283-289.	0.9	68
35	Patterns of distant brain recurrences after radiosurgery alone for newly diagnosed brain metastases: Implications for salvage therapy. Radiotherapy and Oncology, 2014, 112, 212-216.	0.3	25
36	A Brief Report on Outcomes of Stereotactic Ablative Radiotherapy for a Second Primary Lung Cancer: Evidence in Support of Routine CT Surveillance. Journal of Thoracic Oncology, 2014, 9, 1222-1225.	0.5	14

#	Article	IF	CITATIONS
37	When Is a Biopsy-Proven Diagnosis Necessary Before Stereotactic Ablative Radiotherapy for Lung Cancer?. Chest, 2014, 146, 1021-1028.	0.4	58
38	When is a pathologic diagnosis preferred before stereotactic ablative radiotherapy for stage I lung cancer? A decision analysis Journal of Clinical Oncology, 2014, 32, 7534-7534.	0.8	0
39	Treatment of multiple primary lung cancers using stereotactic radiotherapy, either with or without surgery. Radiotherapy and Oncology, 2013, 107, 403-408.	0.3	46
40	Treatment of early-stage lung cancer detected by screening: surgery or stereotactic ablative radiotherapy?. Lancet Oncology, The, 2013, 14, e270-e274.	5.1	74
41	The clinical utility of prognostic scoring systems in patients with brain metastases treated with radiosurgery. Radiotherapy and Oncology, 2013, 106, 370-374.	0.3	48
42	Color intensity projections with hue cycling for intuitive and compressed presentation of motion in medical imaging modalities. Proceedings of SPIE, 2013, , .	0.8	0
43	Radiotherapy for a second primary lung cancer arising post-pneumonectomy: planning considerations and clinical outcomes. Journal of Thoracic Disease, 2013, 5, 116-22.	0.6	29
44	Patient-Reported Quality of Life After Stereotactic Ablative Radiotherapy for Early-Stage Lung Cancer. Journal of Thoracic Oncology, 2012, 7, 1148-1154.	0.5	105
45	Outcomes of Stereotactic Ablative Radiotherapy in Patients With Potentially Operable Stage I Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2012, 83, 348-353.	0.4	324
46	Patterns of disease recurrence after stereotactic ablative radiotherapy for early stage non-small-cell lung cancer: a retrospective analysis. Lancet Oncology, The, 2012, 13, 802-809.	5.1	416
47	MRI and thallium-201 SPECT in the prediction of survival in glioma. Neuroradiology, 2012, 54, 539-546.	1.1	7
48	Stages I-II non-small cell lung cancer treated using either lobectomy by video-assistedÂthoracoscopic surgery (VATS) or stereotactic ablative radiotherapy (SABR): Outcomes of a propensity score-matched analysis Journal of Clinical Oncology, 2012, 30, 7009-7009.	0.8	5
49	Outcomes of stereotactic ablative radiotherapy following a clinical diagnosis of stage I NSCLC: Comparison with a contemporaneous cohort with pathologically proven disease. Radiotherapy and Oncology, 2011, 101, 250-254.	0.3	128
50	Treatment of stage I NSCLC in elderly patients: A population-based matched-pair comparison of stereotactic radiotherapy versus surgery. Radiotherapy and Oncology, 2011, 101, 240-244.	0.3	157
51	Outcomes of Stereotactic Ablative Radiotherapy for Centrally Located Early-Stage Lung Cancer. Journal of Thoracic Oncology, 2011, 6, 2036-2043.	0.5	237
52	Incidence and Risk Factors for Chest Wall Toxicity After Risk-Adapted Stereotactic Radiotherapy for Early-Stage Lung Cancer. Journal of Thoracic Oncology, 2011, 6, 2052-2057.	0.5	97
53	Time for reappraisal of extracranial treatment options?. Cancer, 2011, 117, 597-605.	2.0	17
54	Quality Assurance of 4D-CT Scan Techniques in Multicenter Phase III Trial of Surgery Versus Stereotactic Radiotherapy (Radiosurgery or Surgery for Operable Early Stage (Stage 1A)) Tj ETQq0 0 0 rgBT /C)verlock 10 T	Tf 50 62 Td (N

Physics, 2011, 80, 918-927.

#	Article	IF	CITATIONS
55	Stereotactic ablative radiotherapy for stage I NSCLC: Recent advances and controversies. Journal of Thoracic Disease, 2011, 3, 189-96.	0.6	58
56	Stage I nonsmall cell lung cancer in patients aged ≥75 years. Cancer, 2010, 116, 406-414.	2.0	177
57	In Reply to Dr. Bauman. International Journal of Radiation Oncology Biology Physics, 2010, 78, 965.	0.4	0
58	Impact of Introducing Stereotactic Lung Radiotherapy for Elderly Patients With Stage I Non–Small-Cell Lung Cancer: A Population-Based Time-Trend Analysis. Journal of Clinical Oncology, 2010, 28, 5153-5159.	0.8	434
59	Clinical outcome after repeated radiosurgery for brain arteriovenous malformations. Radiotherapy and Oncology, 2010, 95, 250-256.	0.3	22
60	The accuracy of frameless stereotactic intracranial radiosurgery. Radiotherapy and Oncology, 2010, 97, 390-394.	0.3	68
61	Stereotactic radiotherapy for peripheral lung tumors: A comparison of volumetric modulated arc therapy with 3 other delivery techniques. Radiotherapy and Oncology, 2010, 97, 437-442.	0.3	191
62	Outcomes of stereotactic radiotherapy for a new clinical stage I lung cancer arising postpneumonectomy. Cancer, 2009, 115, 587-594.	2.0	61
63	Radiological progression of cerebral metastases after radiosurgery: assessment of perfusion MRI for differentiating between necrosis and recurrence. Journal of Neurology, 2009, 256, 878-887.	1.8	137
64	Volumetric Modulated Arc Radiotherapy for Vestibular Schwannomas. International Journal of Radiation Oncology Biology Physics, 2009, 74, 610-615.	0.4	82
65	Recommendations for implementing stereotactic radiotherapy in peripheral stage IA non-small cell lung cancer: report from the Quality Assurance Working Party of the randomised phase III ROSEL study. Radiation Oncology, 2009, 4, 1.	1.2	226
66	Phase I Study of Concurrent Whole Brain Radiotherapy and Erlotinib for Multiple Brain Metastases From Non–Small-Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2009, 74, 1391-1396.	0.4	61
67	Whole-Brain Radiotherapy With Simultaneous Integrated Boost to Multiple Brain Metastases Using Volumetric Modulated Arc Therapy. International Journal of Radiation Oncology Biology Physics, 2009, 75, 253-259.	0.4	96
68	In Reply to Dr. Xiao et al International Journal of Radiation Oncology Biology Physics, 2009, 75, 318.	0.4	4
69	Rapid delivery of stereotactic radiotherapy for peripheral lung tumors using volumetric intensity-modulated arcs. Radiotherapy and Oncology, 2009, 93, 122-124.	0.3	154
70	Evaluation of Four-Dimensional Computed Tomography-Based Intensity-Modulated and Respiratory-Gated Radiotherapy Techniques for Pancreatic Carcinoma. International Journal of Radiation Oncology Biology Physics, 2008, 72, 1215-1220.	0.4	46
71	Outcomes of Risk-Adapted Fractionated Stereotactic Radiotherapy for Stage I Non–Small-Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2008, 70, 685-692.	0.4	510
72	Analysis of Carina Position as Surrogate Marker for Delivering Phase-Gated Radiotherapy. International Journal of Radiation Oncology Biology Physics, 2008, 71, 1111-1117.	0.4	27

#	Article	IF	CITATIONS
73	Impact of Audio-Coaching on the Position of Lung Tumors. International Journal of Radiation Oncology Biology Physics, 2008, 71, 1118-1123.	0.4	35
74	Analysis of reproducibility of respiration-triggered gated radiotherapy for lung tumors. Radiotherapy and Oncology, 2008, 87, 59-64.	0.3	30
75	Critical Review of Nonsurgical Treatment Options for Stage I Nonâ€5mall Cell Lung Cancer. Oncologist, 2008, 13, 309-319.	1.9	57
76	CT-guided Pulmonary Radiofrequency Ablation. Radiology, 2008, 246, 334-335.	3.6	0
77	Fatal Interstitial Lung Disease After Erlotinib for Non-small Cell Lung Cancer. Journal of Thoracic Oncology, 2008, 3, 1050-1053.	0.5	28
78	EXTENSIVE WHITE MATTER CHANGES AFTER STEREOTACTIC RADIOSURGERY FOR BRAIN ARTERIOVENOUS MALFORMATIONS. Neurosurgery, 2008, 63, 1064-1070.	0.6	24
79	Lung Cancer: Intensity-Modulated Radiation Therapy, Four-Dimensional Imaging and Mobility Management. , 2007, 40, 239-252.		8
80	Stereotactic Radiotherapy for Centrally Located Early-Stage Lung Tumors. Journal of Clinical Oncology, 2007, 25, 464-464.	0.8	13
81	COLOR INTENSITY PROJECTION OF DIGITALLY SUBTRACTED ANGIOGRAPHY FOR THE VISUALIZATION OF BRAIN ARTERIOVENOUS MALFORMATIONS. Neurosurgery, 2007, 60, 511-515.	0.6	25
82	Can Mediastinal Nodal Mobility Explain the Low Yield Rates for Transbronchial Needle Aspiration Without Real-Time Imaging?. Chest, 2007, 131, 1783-1787.	0.4	33
83	B5-04: Clinical results and toxicity after 4-dimensional stereotactic radiotherapy for early stage non-small cell lung cancer (NSCLC). Journal of Thoracic Oncology, 2007, 2, S348.	0.5	4
84	Delineation of brain AVMs on MR-Angiography for the purpose of stereotactic radiosurgery. International Journal of Radiation Oncology Biology Physics, 2007, 67, 308-316.	0.4	20
85	Four-dimensional computed tomographic analysis of esophageal mobility during normal respiration. International Journal of Radiation Oncology Biology Physics, 2007, 67, 775-780.	0.4	102
86	Is Adaptive Treatment Planning Required for Stereotactic Radiotherapy of Stage I Non–Small-Cell Lung Cancer?. International Journal of Radiation Oncology Biology Physics, 2007, 67, 1370-1374.	0.4	54
87	A Four-Dimensional CT-Based Evaluation of Techniques for Gastric Irradiation. International Journal of Radiation Oncology Biology Physics, 2007, 69, 903-909.	0.4	37
88	Verifying 4D gated radiotherapy using time-integrated electronic portal imaging: a phantom and clinical study. Radiation Oncology, 2007, 2, 32.	1.2	14
89	4D imaging for target definition in stereotactic radiotherapy for lung cancer. Acta Oncológica, 2006, 45, 966-972.	0.8	74
90	Evaluating mobility for radiotherapy planning of lung tumors: A comparison of virtual fluoroscopy and 4DCT. Lung Cancer, 2006, 53, 31-37.	0.9	28

#	Article	IF	CITATIONS
91	Reproducibility of target volumes generated using uncoached 4-dimensional CT scans for peripheral lung cancer. Radiation Oncology, 2006, 1, 43.	1.2	31
92	A dosimetric analysis of respiration-gated radiotherapy in patients with stage III lung cancer. Radiation Oncology, 2006, 1, 8.	1.2	51
93	Renal mobility during uncoached quiet respiration: An analysis of 4DCT scans. International Journal of Radiation Oncology Biology Physics, 2006, 64, 799-803.	0.4	57
94	Time trends in target volumes for stage I non–small-cell lung cancer after stereotactic radiotherapy. International Journal of Radiation Oncology Biology Physics, 2006, 64, 1221-1228.	0.4	60
95	Color intensity projections: A rapid approach for evaluating four-dimensional CT scans in treatment planning. International Journal of Radiation Oncology Biology Physics, 2006, 64, 954-961.	0.4	29
96	Case 21-2006: A Man with Left-Sided Facial Pain. New England Journal of Medicine, 2006, 355, 2375-2376.	13.9	4
97	Stereotactic radiosurgery for brain AVMs: Role of interobserver variation in target definition on digital subtraction angiography. International Journal of Radiation Oncology Biology Physics, 2005, 62, 246-252.	0.4	50
98	Benefit of respiration-gated stereotactic radiotherapy for stage I lung cancer: An analysis of 4DCT datasets. International Journal of Radiation Oncology Biology Physics, 2005, 62, 554-560.	0.4	192
99	Use of CD-ROM–based tool for analyzing contouring variations in involved-field radiotherapy for Stage III NSCLC. International Journal of Radiation Oncology Biology Physics, 2005, 63, 334-339.	0.4	18
100	Use of maximum intensity projections (MIP) for target volume generation in 4DCT scans for lung cancer. International Journal of Radiation Oncology Biology Physics, 2005, 63, 253-260.	0.4	270
101	Defining target volumes for non-small cell lung carcinoma. Seminars in Radiation Oncology, 2004, 14, 308-314.	1.0	39
102	Four-dimensional CT scans for treatment planning in stereotactic radiotherapy for stage I lung cancer. International Journal of Radiation Oncology Biology Physics, 2004, 60, 1283-1290.	0.4	277
103	In regard to Rosenman et al., high-dose conformal radiotherapy for treatment of stage III A/B non–small-cell lung cancer: technical issues and results of a phase I/II trial. IJROBP 2002;54:348–356. International Journal of Radiation Oncology Biology Physics, 2003, 55, 1458-1459.	0.4	0
104	Tumor location cannot predict the mobility of lung tumors: a 3D analysis of data generated from multiple CT scans. International Journal of Radiation Oncology Biology Physics, 2003, 56, 348-354.	0.4	121
105	Are multiple CT scans required for planning curative radiotherapy in lung tumors of the lower lobe?. International Journal of Radiation Oncology Biology Physics, 2003, 55, 1394-1399.	0.4	76
106	Curative radiotherapy for a second primary lung cancer arising after pneumonectomy — techniques and results. Radiotherapy and Oncology, 2002, 62, 21-25.	0.3	16
107	High-dose, high-precision treatment options for boosting cancer of the nasopharynx. Radiotherapy and Oncology, 2002, 63, 67-74.	0.3	38
108	Has 3-D conformal radiotherapy (3D CRT) improved the local tumour control for stage I non-small cell lung cancer?. Radiotherapy and Oncology, 2002, 63, 151-157.	0.3	84

#	Article	IF	CITATIONS
109	Can errors in reconstructing pre-chemotherapy target volumes contribute to the inferiority of sequential chemoradiation in stage III non-small cell lung cancer (NSCLC)?. Lung Cancer, 2002, 38, 297-301.	0.9	15
110	Role of endocavitary brachytherapy with or without chemotherapy in cancer of the nasopharynx. International Journal of Radiation Oncology Biology Physics, 2002, 52, 755-768.	0.4	35
111	What margins are necessary for incorporating mediastinal nodal mobility into involved-field radiotherapy for lung cancer?. International Journal of Radiation Oncology Biology Physics, 2002, 53, 1211-1215.	0.4	32
112	Can elective nodal irradiation be omitted in stage III non-small-cell lung cancer? analysis of recurrences in a phase II study of induction chemotherapy and involved-field radiotherapy. International Journal of Radiation Oncology Biology Physics, 2002, 54, 999-1006.	0.4	99
113	Incorporating lung tumor mobility in radiotherapy planning. International Journal of Radiation Oncology Biology Physics, 2002, 52, 1142-1143.	0.4	4
114	Dosimetric consequences of tumor mobility in radiotherapy of stage I non-small cell lung cancer – an analysis of data generated using â€~slow' CT scans. Radiotherapy and Oncology, 2001, 61, 93-99.	0.3	52
115	Multiple "slow―CT scans for incorporating lung tumor mobility in radiotheraphy planning. International Journal of Radiation Oncology Biology Physics, 2001, 51, 932-937.	0.4	191
116	Mucosal dose prescription in endobronchial brachytherapy: a study based on CT-dosimetry. International Journal of Radiation Oncology Biology Physics, 2000, 46, 1051-1059.	0.4	8
117	Characterization of the frequency distribution for human hematogenous metastases: evidence for clustering and a power variance function. Clinical and Experimental Metastasis, 2000, 18, 219-229.	1.7	17
118	A CT-assisted method of dosimetry in brachytherapy of lung cancer. Radiotherapy and Oncology, 2000, 55, 75-80.	0.3	15
119	A three-dimensional CT-based target definition for elective irradiation of the neck. International Journal of Radiation Oncology Biology Physics, 1999, 45, 33-39.	0.4	133
120	Evaluation of a target contouring protocol for 3D conformal radiotherapy in non-small cell lung cancer. Radiotherapy and Oncology, 1999, 53, 247-255.	0.3	139
121	Principles of radiotherapy of neoplastic meningosis. Journal of Neuro-Oncology, 1998, 38, 145-150.	1.4	8