Yossi Paltiel

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6577806/yossi-paltiel-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

1,846 100 22 39 g-index h-index citations papers 116 8.2 2,590 5.55 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
100	Theory of Chirality Induced Spin Selectivity: Progress and Challenges Advanced Materials, 2022, e2106	62.9	14
99	Spin-Induced Organization of Cellulose Nanocrystals <i>Biomacromolecules</i> , 2022 ,	6.9	1
98	Metal Organic Spin Transistor. <i>Nano Letters</i> , 2021 , 21, 8657-8663	11.5	2
97	Transient Dissipative Optical Properties of Aggregated Au Nanoparticles, CdSe/ZnS Quantum Dots, and Supramolecular Nucleic Acid-Stabilized Ag Nanoclusters. <i>Journal of the American Chemical Society</i> , 2021 , 143, 17622-17632	16.4	10
96	Simultaneous High-Purity Enantiomeric Resolution of Conglomerates Using Magnetic Substrates. <i>Crystal Growth and Design</i> , 2021 , 21, 2925-2931	3.5	3
95	The spin selectivity effect in chiral materials. APL Materials, 2021, 9, 040902	5.7	25
94	Chiral spintronics. <i>Nature Reviews Physics</i> , 2021 , 3, 328-343	23.6	41
93	Magnetic passivation using chiral molecules. <i>Applied Physics Letters</i> , 2021 , 118, 172401	3.4	4
92	Dynamic Spin-Controlled Enantioselective Catalytic Chiral Reactions. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 5469-5472	6.4	3
91	Chirality Nanosensor with Direct Electric Readout by Coupling of Nanofloret Localized Plasmons with Electronic Transport. <i>Nano Letters</i> , 2021 , 21, 6496-6503	11.5	4
90	Marine cyanobacteria tune energy transfer efficiency in their light-harvesting antennae by modifying pigment coupling. <i>FEBS Journal</i> , 2021 , 288, 980-994	5.7	10
89	A nanoscale paper-based near-infrared optical nose (NIRON). <i>Biosensors and Bioelectronics</i> , 2021 , 172, 112763	11.8	11
88	A nanoscale optical biosensor based on peptide encapsulated SWCNTs for detection of acetic acid in the gaseous phase. <i>Sensors and Actuators B: Chemical</i> , 2021 , 327, 128832	8.5	19
87	Long-Time-Scale Magnetization Ordering Induced by an Adsorbed Chiral Monolayer on Ferromagnets. <i>ACS Nano</i> , 2021 , 15, 5574-5579	16.7	11
86	Interplay between friction and spin-orbit coupling as a source of spin polarization. <i>Physical Review B</i> , 2021 , 104,	3.3	3
85	Evidence for new enantiospecific interaction force in chiral biomolecules. <i>CheM</i> , 2021 ,	16.2	7
84	Analytic Model of Chiral-Induced Spin Selectivity. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 11716-117	2 3.8	16

(2020-2020)

83	Increasing the Transition Temperature of High-TC Superconductor Thin Films by Organic Linking of Gold Nanoparticles. <i>Journal of Superconductivity and Novel Magnetism</i> , 2020 , 33, 1941-1948	1.5	2
82	Room-Temperature Inter-Dot Coherent Dynamics in Multilayer Quantum Dot Materials. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 16222-16231	3.8	13
81	Tuning Quantum Dots Coupling Using Organic Linkers with Different Vibrational Modes. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 16159-16165	3.8	1
80	Magnetic oriented microparticles preparation. <i>MethodsX</i> , 2020 , 7, 100975	1.9	
79	Effect of Chiral Molecules on the Electron's Spin Wavefunction at Interfaces. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 1550-1557	6.4	33
78	Charge-Ordered Helical Polypeptide Monolayers on Au(111). <i>Journal of Physical Chemistry C</i> , 2020 , 124, 5734-5739	3.8	8
77	Coupling effects in QD dimers at sub-nanometer interparticle distance. <i>Nano Research</i> , 2020 , 13, 1071-	1080	10
76	Universal proximity effects in hybrid superconductor l Inker moleculeflanoparticle systems: The effect of molecular chirality. <i>Applied Physics Letters</i> , 2020 , 117, 242601	3.4	O
75	The Electron Spin as a Chiral Reagent. Angewandte Chemie, 2020, 132, 1670-1675	3.6	2
74	Selective enantiomer purification using magnetic oriented interacting microparticles. <i>Separation and Purification Technology</i> , 2020 , 239, 116501	8.3	2
73	Chiral Induced Spin Selectivity Gives a New Twist on Spin-Control in Chemistry. <i>Accounts of Chemical Research</i> , 2020 , 53, 2659-2667	24.3	24
72	Molecular Fingerprint Detection: Molecular Fingerprint Detection Using Portable Water-Compatible Electronic Tunneling Spectroscopy Device (Adv. Mater. Interfaces 19/2020). <i>Advanced Materials Interfaces</i> , 2020 , 7, 2070106	4.6	
71	Asymmetric reactions induced by electron spin polarization. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 21570-21582	3.6	13
70	Energy Sources of the Depth-Generalist Mixotrophic Coral. Frontiers in Marine Science, 2020, 7, 988	4.5	7
69	Optical Multilevel Spin Bit Device Using Chiral Quantum Dots. <i>Nano Letters</i> , 2020 , 20, 8675-8681	11.5	9
68	Role of Exchange Interactions in the Magnetic Response and Intermolecular Recognition of Chiral Molecules. <i>Nano Letters</i> , 2020 , 20, 7077-7086	11.5	19
67	Molecular Fingerprint Detection Using Portable Water-Compatible Electronic Tunneling Spectroscopy Device. <i>Advanced Materials Interfaces</i> , 2020 , 7, 2000605	4.6	1
66	Control of magneto-optical properties of cobalt-layers by adsorption of ⊞elical polyalanine self-assembled monolayers. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 11822-11829	7.1	1

65	Structure-based Hamiltonian model for IsiA uncovers a highly robust pigment-protein complex. Journal of the Royal Society Interface, 2020 , 17, 20200399	4.1	1
64	Electronic transport through single polyalanine molecules. <i>Physical Review B</i> , 2020 , 102,	3.3	2
63	A Paper-Based Near-Infrared Optical Biosensor for Quantitative Detection of Protease Activity Using Peptide-Encapsulated SWCNTs. <i>Sensors</i> , 2020 , 20,	3.8	12
62	Correlation between Ferromagnetic Layer Easy Axis and the Tilt Angle of Self Assembled Chiral Molecules. <i>Molecules</i> , 2020 , 25,	4.8	9
61	Photosystem II core quenching in desiccated Leptolyngbya ohadii. <i>Photosynthesis Research</i> , 2020 , 143, 13-18	3.7	4
60	The Electron Spin as a Chiral Reagent. Angewandte Chemie - International Edition, 2020, 59, 1653-1658	16.4	33
59	Chiral Molecules and the Spin Selectivity Effect. Journal of Physical Chemistry Letters, 2020, 11, 3660-36	66 .4	55
58	Chiral molecules-ferromagnetic interfaces, an approach towards spin controlled interactions. <i>Applied Physics Letters</i> , 2019 , 115, 133701	3.4	10
57	Simple fabrication of SWIR detectors based on wet deposition of carbon nanotubes and quantum dots. <i>Sensors and Actuators A: Physical</i> , 2019 , 295, 469-473	3.9	1
56	Spin-Exciton Delocalization Enhancement in Multilayer Chiral Linker/Quantum Dot Structures. Journal of Physical Chemistry Letters, 2019, 10, 3858-3862	6.4	5
55	3D strain-induced superconductivity in LaCuO using a simple vertically aligned nanocomposite approach. <i>Science Advances</i> , 2019 , 5, eaav5532	14.3	22
54	Broad-band high-gain room temperature photodetectors using semiconductor-metal nanofloret hybrids with wide plasmonic response. <i>Nanoscale</i> , 2019 , 11, 6368-6376	7.7	5
53	Chiral molecules and the electron spin. <i>Nature Reviews Chemistry</i> , 2019 , 3, 250-260	34.6	226
52	Enantioseparation by crystallization using magnetic substrates. <i>Chemical Science</i> , 2019 , 10, 5246-5250	9.4	30
51	. IEEE Sensors Journal, 2019 , 19, 3668-3672	4	2
50	Electric Field-Controlled Magnetization in GaAs/AlGaAs Heterostructures-Chiral Organic Molecules Hybrids. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 1139-1145	6.4	21
49	AFM-Based Spin-Exchange Microscopy Using Chiral Molecules. <i>Advanced Materials</i> , 2019 , 31, e1904206	24	25
48	Magnetic-related States and Order Parameter Induced in a Conventional Superconductor by Nonmagnetic Chiral Molecules. <i>Nano Letters</i> , 2019 , 19, 5167-5175	11.5	19

(2018-2019)

47	Helical Ordering of ∄-Polyalanine Molecular Layers by Interdigitation. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 612-617	3.8	8
46	Single Domain 10 nm Ferromagnetism Imprinted on Superparamagnetic Nanoparticles Using Chiral Molecules. <i>Small</i> , 2019 , 15, e1804557	11	24
45	Nano Ferromagnetism: Single Domain 10 nm Ferromagnetism Imprinted on Superparamagnetic Nanoparticles Using Chiral Molecules (Small 1/2019). <i>Small</i> , 2019 , 15, 1970004	11	3
44	Photosynthetic Energy Transfer at the Quantum/Classical Border. <i>Trends in Plant Science</i> , 2018 , 23, 497-	-596	12
43	Reducing Optical Losses in GaN Waveguides 「Toward an Electro-Optic Phase Modulator. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2018 , 215, 1700551	1.6	4
42	Fast Energy Transfer in CdSe Quantum Dot Layered Structures: Controlling Coupling with Covalent-Bond Organic Linkers. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 5753-5758	3.8	18
41	Chiral Molecule-Enhanced Extinction Ratios of Quantum Dots Coupled to Random Plasmonic Structures. <i>Langmuir</i> , 2018 , 34, 3076-3081	4	7
40	Proximity Effect through Chiral Molecules in Nb@raphene-Based Devices. <i>Advanced Materials Technologies</i> , 2018 , 3, 1700300	6.8	6
39	Enhanced vortex pinning in Nb using proximity effect through organic molecules. <i>Journal of Physics Communications</i> , 2018 , 2, 025001	1.2	1
38	Four-wave mixing and nonlinear parameter measurement in a gallium-nitride ridge waveguide. <i>Optical Materials Express</i> , 2018 , 8, 66	2.6	12
37	Optical Chiral Induced Spin Selectivity XMCD Study. <i>Chimia</i> , 2018 , 72, 379-383	1.3	8
36	Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates. <i>Science</i> , 2018 , 360, 1331-1334	33.3	183
35	Spin-Dependent Processes Measured without a Permanent Magnet. Advanced Materials, 2018, 30, e170	723490	21
34	Quantum Dot Coupling in a Vertical Transport Device under Ambient Conditions. <i>ACS Omega</i> , 2018 , 3, 6224-6229	3.9	
33	Unconventional order parameter induced by helical chiral molecules adsorbed on a metal proximity coupled to a superconductor. <i>Physical Review B</i> , 2018 , 98,	3.3	11
32	Chirality and Spin: A Different Perspective on Enantioselective Interactions. <i>Chimia</i> , 2018 , 72, 394-398	1.3	13
31	Determining the Molecular Dipole Orientation on Nanoplasmonic Structures. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 16901-16908	3.8	2
30	Single Nanoparticle Magnetic Spin Memristor. <i>Small</i> , 2018 , 14, e1801249	11	48

29	Probing Molecular-Transport Properties using the Superconducting Proximity Effect. <i>Small Methods</i> , 2017 , 1, 1600034	12.8	3
28	Unusual ZFC and FC magnetic behavior in thin Co multi-layered structure. <i>Journal of Magnetism and Magnetic Materials</i> , 2017 , 428, 357-361	2.8	Ο
27	Regulating the Energy Flow in a Cyanobacterial Light-Harvesting Antenna Complex. <i>Journal of Physical Chemistry B</i> , 2017 , 121, 1240-1247	3.4	18
26	InGaAs/GaAsSb Type-II superlattice based photodiodes for short wave infrared detection. <i>Infrared Physics and Technology</i> , 2017 , 84, 63-71	2.7	16
25	Achieving Exciton Delocalization in Quantum Dot Aggregates Using Organic Linker Molecules. Journal of Physical Chemistry Letters, 2017 , 8, 1014-1018	6.4	17
24	Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field. <i>Nature Communications</i> , 2017 , 8, 14567	17.4	90
23	Magnetic Nanoplatelet-Based Spin Memory Device Operating at Ambient Temperatures. <i>Advanced Materials</i> , 2017 , 29, 1606748	24	34
22	Sensory properties of oxide films with high concentrations of conduction electrons. <i>Russian Journal of Physical Chemistry A</i> , 2017 , 91, 572-576	0.7	1
21	Dynamic Control of the Vortex Pinning Potential in a Superconductor Using Current Injection through Nanoscale Patterns. <i>Nano Letters</i> , 2017 , 17, 2934-2939	11.5	5
20	Concentration-based self-assembly of phycocyanin. <i>Photosynthesis Research</i> , 2017 , 134, 39-49	3.7	12
19	Confined water dynamics in a hydrated photosynthetic pigment-protein complex. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 28063-28070	3.6	4
18	Enhancement of near infrared light sensing using side-gate modulation. <i>Sensors and Actuators A: Physical</i> , 2017 , 267, 1-7	3.9	2
17	Light Adaptation in Phycobilisome Antennas: Influence on the Rod Length and Structural Arrangement. <i>Journal of Physical Chemistry B</i> , 2017 , 121, 9196-9202	3.4	9
16	Optical losses in p-type layers of GaN ridge waveguides in the IR region. <i>Applied Physics Letters</i> , 2017 , 111, 022103	3.4	2
15	Changes in aggregation states of light-harvesting complexes as a mechanism for modulating energy transfer in desert crust cyanobacteria. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 9481-9486	11.5	22
14	Self-formed nanogap junctions for electronic detection and characterization of molecules and quantum dots. <i>RSC Advances</i> , 2017 , 7, 25861-25866	3.7	4
13	Features of the electrical and photoelectrical properties of nanocrystalline indium and zinc oxide films. <i>Russian Journal of Physical Chemistry B</i> , 2016 , 10, 810-815	1.2	5
12	Unconventional superconductivity induced in Nb films by adsorbed chiral molecules. <i>New Journal of Physics</i> , 2016 , 18, 113048	2.9	22

LIST OF PUBLICATIONS

11	Cold denaturation induces inversion of dipole and spin transfer in chiral peptide monolayers. Nature Communications, 2016 , 7, 10744	17.4	62
10	Nano bio optically tunable composite nanocrystalline cellulose films. <i>RSC Advances</i> , 2015 , 5, 7713-7719	3.7	12
9	Nanoscale Charge Separation Using Chiral Molecules. ACS Photonics, 2015, 2, 1476-1481	6.3	28
8	Properties of Self-Assembled Hybrid Organic Molecule/Quantum Dot Multilayered Structures. Journal of Physical Chemistry C, 2014 , 118, 25725-25730	3.8	8
7	Local light-induced magnetization using nanodots and chiral molecules. <i>Nano Letters</i> , 2014 , 14, 6042-9	11.5	67
6	Increasing the critical temperature of Nb films by chemically linking magnetic nanoparticles using organic molecules. <i>Europhysics Letters</i> , 2014 , 108, 37006	1.6	5
5	A chiral-based magnetic memory device without a permanent magnet. <i>Nature Communications</i> , 2013 , 4, 2256	17.4	116
4	Increased superconducting transition temperature of a niobium thin film proximity coupled to gold nanoparticles using linking organic molecules. <i>Physical Review Letters</i> , 2012 , 108, 107004	7.4	15
3	Collective effects in charge transfer within a hybrid organic-inorganic system. <i>Physical Review Letters</i> , 2010 , 104, 016804	7.4	7
2	Hybrid nanocrystals-organic-semiconductor light sensor. <i>Applied Physics Letters</i> , 2008 , 92, 223112	3.4	31
1	Self-assembling of InAs nanocrystals on GaAs: The effect of electronic coupling and embedded gold nanoparticles on the photoluminescence. <i>Applied Physics Letters</i> , 2006 , 89, 033108	3.4	17