Guenter Huber

List of Publications by Citations

Source: https://exaly.com/author-pdf/6577583/guenter-huber-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

237 10,148 61 87 g-index

255 11,853 2.7 5.8 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
237	Spectroscopic characterization and laser performance of diode-laser-pumped Nd: GdVO4. <i>Applied Physics B: Lasers and Optics</i> , 1994 , 58, 373-379	1.9	288
236	. IEEE Journal of Quantum Electronics, 1988, 24, 924-933	2	264
235	Pulsed laser operation of Y b-dope d KY(WO(4))(2) and KGd(WO(4))(2). Optics Letters, 1997, 22, 1317-9	3	228
234	CW laser performance of Yb and Er,Yb doped tungstates. <i>Applied Physics B: Lasers and Optics</i> , 1997 , 64, 409-413	1.9	193
233	All-solid-state continuous-wave frequency-doubled Nd:YAG-BiBO laser with 2.8-W output power at 473 nm. <i>Optics Letters</i> , 2003 , 28, 432-4	3	187
232	Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications. <i>Laser Physics Letters</i> , 2004 , 1, 285-290	1.5	174
231	Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals. <i>Applied Physics B: Lasers and Optics</i> , 1995 , 61, 151-158	1.9	150
230	Out of the blue: semiconductor laser pumped visible rare-earth doped lasers. <i>Laser and Photonics Reviews</i> , 2016 , 10, 548-568	8.3	143
229	High-power continuous-wave upconversion fiber laser at room temperature. <i>Optics Letters</i> , 1997 , 22, 808-10	3	134
228	Femtosecond thin-disk laser with 141 W of average power. Optics Letters, 2010, 35, 2302-4	3	129
227	Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser. <i>Applied Physics B: Lasers and Optics</i> , 2009 , 97, 251-255	1.9	121
226	Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser. <i>Optics Express</i> , 2010 , 18, 16035-41	3.3	120
225	High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation. <i>Applied Physics B: Lasers and Optics</i> , 2009 , 97, 281-295	1.9	119
224	Diode pumping of a continuous-wave Pr3+-doped LiYF4 laser. <i>Optics Letters</i> , 2004 , 29, 2638-40	3	119
223	New Oxide Crystals for Solid State Lasers. <i>Crystal Research and Technology</i> , 1999 , 34, 255-260	1.3	118
222	Green upconversion continuous wave Er3+:LiYF4 laser at room temperature. <i>Applied Physics Letters</i> , 1994 , 65, 383-384	3.4	117
221	Broadly tunable high-power Yb:Lu(2)O(3) thin disk laser with 80% slope efficiency. <i>Optics Express</i> , 2007 , 15, 7075-82	3.3	114

(2002-1995)

220	Spectroscopic properties and diode pumped 1.6 h laser performance in Yb-codoped Er: Y3Al5O12 and Er: Y2SiO5. <i>Optics Communications</i> , 1995 , 118, 557-561	2	114
219	Structural, spectroscopic, and tunable laser properties of Yb3+-doped NaGd(WO4)2. <i>Physical Review B</i> , 2006 , 74,	3.3	110
218	Thermal and laser properties of Yb:LuAG for kW thin disk lasers. <i>Optics Express</i> , 2010 , 18, 20712-22	3.3	109
217	Power scaling of semiconductor laser pumped Praseodymium-lasers. <i>Optics Express</i> , 2007 , 15, 5172-8	3.3	107
216	Rare-earth-doped sesquioxides. <i>Journal of Luminescence</i> , 2000 , 87-89, 973-975	3.8	104
215	Watt-level passively Q-switched Er:LuDlaser at 2.84 th using MoSll <i>Optics Letters</i> , 2016 , 41, 540-3	3	103
214	Continuous wave laser operation of Yb3+:YVO4. Applied Physics B: Lasers and Optics, 2004, 79, 543-546	1.9	100
213	Spectroscopy and green upconversion laser emission of Er3+-doped crystals at room temperature. <i>Journal of Applied Physics</i> , 1994 , 76, 1413-1422	2.5	100
212	Efficient Continuous Wave-laser emission of Pr3+-doped fluorides at room temperature. <i>Applied Physics B: Lasers and Optics</i> , 1994 , 58, 149-151	1.9	99
211	Near-infrared emission of Cr4+-doped garnets: Lifetimes, quantum efficiencies, and emission cross sections. <i>Physical Review B</i> , 1995 , 51, 17323-17331	3.3	97
210	High-power red, orange, and green Pr□+:LiYF□asers. <i>Optics Letters</i> , 2014 , 39, 3193-6	3	96
209	Investigation of diode-pumped 2.8-microm Er:LiYF(4) lasers with various doping levels. <i>Optics Letters</i> , 1996 , 21, 585-7	3	93
208	Efficient high-power continuous wave Er:Lu2O3 laser at 2.85 fh. Optics Letters, 2012, 37, 2568-70	3	92
207	Efficient visible laser emission of GaN laser diode pumped Pr-doped fluoride scheelite crystals. <i>Optics Express</i> , 2008 , 16, 15932-41	3.3	91
206	Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc_3(BO_3)_4 and GdVO_4 laser crystals. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1998 , 15, 1052	1.7	90
205	. IEEE Journal of Quantum Electronics, 1988, 24, 920-923	2	89
204	Spectroscopic properties and efficient diode-pumped laser operation of neodymium-doped lanthanum scandium borate. <i>IEEE Journal of Quantum Electronics</i> , 1994 , 30, 913-917	2	88
203	Growth of high-melting sesquioxides by the heat exchanger method. <i>Journal of Crystal Growth</i> , 2002 , 237-239, 879-883	1.6	86

202	Semiconductor-laser-pumped high-power upconversion laser. <i>Applied Physics Letters</i> , 2006 , 88, 061108	3.4	80
201	Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides. <i>Applied Physics B: Lasers and Optics</i> , 2011 , 102, 509-514	1.9	79
200	Rare-earth doped chalcogenide glass laser. <i>Electronics Letters</i> , 1996 , 32, 666	1.1	79
199	Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3. <i>Journal of Crystal Growth</i> , 2008 , 310, 1934-1938	1.6	79
198	Generation of 740 mW of blue light by intracavity frequency doubling with a first-order quasi-phase-matched KTiOPO(4) crystal. <i>Optics Letters</i> , 1999 , 24, 205-7	3	79
197	Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3. <i>Ceramics International</i> , 2000 , 26, 589-592	5.1	78
196	Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing. <i>Applied Physics B: Lasers and Optics</i> , 2010 , 100, 131-135	1.9	76
195	Green up-conversion laser emission in Er-doped crystals at room temperature. <i>Applied Physics Letters</i> , 1993 , 63, 2030-2031	3.4	76
194	Visible laser emission of solid state pumped LiLuF(4):Pr(3+). Optics Express, 2007, 15, 992-1002	3.3	75
193	Advances in up-conversion lasers based on Er3+ and Pr3+. Optical Materials, 2004, 26, 365-374	3.3	75
192	Infrared and self-frequency doubled laser action in Yb3+-doped LiNbO3:MgO. <i>Applied Physics Letters</i> , 1999 , 74, 3113-3115	3.4	73
191	Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO3, IBaB2O4, and LiB3O5. <i>Applied Physics B: Lasers and Optics</i> , 1997 , 65, 789-792	1.9	72
190	Excited state absorption and stimulated emission of Nd3+ in crystals. Part 2: YVO4, GdVO4, and Sr5(PO4)3F. <i>Applied Physics B: Lasers and Optics</i> , 1998 , 67, 549-553	1.9	71
189	. IEEE Journal of Quantum Electronics, 1993 , 29, 2508-2512	2	71
188	Passively Q-switched 180-ps Nd:LaSc(3)(BO(3))(4) microchip laser. <i>Optics Letters</i> , 1996 , 21, 405-7	3	69
187	Continuous-wave simultaneous dual-wavelength operation at 912 nm and 1063 nm in Nd:GdVO4. <i>Applied Physics B: Lasers and Optics</i> , 2006 , 86, 65-70	1.9	67
186	Optical properties of Nd^3+- and Tb^3+-doped KPb_2Br_5 and RbPb_2Br_5 with low nonradiative decay. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2004 , 21, 2117	1.7	66
185	Solid-state lasers: status and future [Invited]. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2010 , 27, B93	1.7	65

(2011-1997)

184	All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency mixer. <i>Optics Letters</i> , 1997 , 22, 1461-3	3	65	
183	Spectroscopy and excited-state absorption of Ni2+-doped MgAl2O4. <i>Journal of Luminescence</i> , 1997 , 71, 265-268	3.8	65	
182	Continuous wave 1.6 In laser action in Er doped garnets at room temperature?. <i>Applied Physics B, Photophysics and Laser Chemistry</i> , 1989 , 49, 269-273		64	
181	175 fs Tm:Lu2O3 laser at 2.07 µm mode-locked using single-walled carbon nanotubes. <i>Optics Express</i> , 2012 , 20, 5313-8	3.3	63	
180	Yellow laser performance of Dy□+ in co-doped Dy,Tb:LiLuF□ <i>Optics Letters</i> , 2014 , 39, 6628-31	3	62	
179	Stimulated emission and laser action of Pr3+-doped YA1O3. <i>Applied Physics B: Lasers and Optics</i> , 1994 , 58, 413-420	1.9	62	
178	Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 fh. Optics Letters, 2011, 36, 948-50	3	61	
177	Efficient continuous wave laser operation of Tb3+-doped fluoride crystals in the green and yellow spectral regions. <i>Laser and Photonics Reviews</i> , 2016 , 10, 335-344	8.3	61	
176	Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3. <i>Journal of Applied Physics</i> , 2000 , 87, 4056-4062	2.5	57	
175	Green Er(3+):YLiF(4) upconversion laser at 551nm with Yb(3+) codoping: a novel pumping scheme. <i>Optics Letters</i> , 1997 , 22, 1412-4	3	53	
174	Spectroscopic properties and laser emission of Er3+ in scandium silicates near 1.5 lb. <i>Optical Materials</i> , 1998 , 10, 9-17	3.3	52	
173	Electronic and vibronic transitions of the Cr4+-doped garnets Lu3Al5O12, Y3Al5O12, Y3Ga5O12 and Gd3Ga5O12. <i>Journal of Luminescence</i> , 1996 , 68, 1-14	3.8	52	
172	Tunable room-temperature laser action of Cr4+-doped Y3ScxAl5⊠O12. <i>Applied Physics B: Lasers and Optics</i> , 1994 , 58, 153-156	1.9	52	
171	Continuous-wave and modelocked Yb:YCOB thin disk laser: first demonstration and future prospects. <i>Optics Express</i> , 2010 , 18, 19201-8	3.3	51	
170	Continuous-wave ultraviolet generation at 320 nm by intracavity frequency doubling of red-emitting Praseodymium lasers. <i>Optics Express</i> , 2006 , 14, 3282-7	3.3	49	
169	Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique. <i>Applied Physics B: Lasers and Optics</i> , 2011 , 103, 1-4	1.9	48	
168	Passive Q-switching of 1.44 th and 1.34 th diode-pumped Nd:YAG lasers with a V:YAG saturable absorber. <i>Applied Physics B: Lasers and Optics</i> , 2003 , 76, 245-247	1.9	48	
167	Crystal growth, spectroscopy, and diode pumped laser performance of Pr, Mg:SrAl12O19. <i>Applied Physics B: Lasers and Optics</i> , 2011 , 102, 731-735	1.9	47	

166	Efficient femtosecond high power Yb:Lu(2)O(3) thin disk laser. <i>Optics Express</i> , 2007 , 15, 16966-71	3.3	47
165	Room-temperature green laser emission of Er:LiYF4. <i>Applied Physics Letters</i> , 1993 , 63, 729-730	3.4	47
164	Quasi-continuous wave laser operation of Cr4+-doped Y2SiO5 at room temperature. <i>Optics Communications</i> , 1993 , 101, 195-198	2	46
163	Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription. <i>Optics Express</i> , 2013 , 21, 25501-8	3.3	44
162	Diode pumped laser operation and spectroscopy of Pr3+:LaF3. <i>Optics Express</i> , 2012 , 20, 20387-95	3.3	44
161	Diode-pumped continuous-wave, quasi-continuous-wave, and Q-switched laser operation of Yb3+,Tm3+: YLiF4 at 1.5 and 2.3 fb. <i>Journal of Applied Physics</i> , 1998 , 84, 5900-5904	2.5	44
160	High quantum efficiency YbAG-crystals. <i>Journal of Luminescence</i> , 2007 , 125, 238-247	3.8	43
159	Sub-100 femtosecond pulses from a SESAM modelocked thin disk laser. <i>Applied Physics B: Lasers and Optics</i> , 2012 , 106, 559-562	1.9	42
158	Fluorescence dynamics, excited-state absorption, and stimulated emission of Er^3+ in KY(WO_4)_2. Journal of the Optical Society of America B: Optical Physics, 1998, 15, 1205	1.7	42
157	Investigation of diode-pumped 2.8-microm laser performance in Er:BaY(2)F(8). <i>Optics Letters</i> , 1996 , 21, 48-50	3	42
156	Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 fn. <i>Applied Physics B: Lasers and Optics</i> , 2011 , 102, 19-24	1.9	41
155	Diode-pumped mode-locked Yb:LuScO(3) single crystal laser with 74 fs pulse duration. <i>Optics Letters</i> , 2010 , 35, 511-3	3	41
154	High-power diode-pumped continuous-wave Nd(3+) lasers at wavelengths near 1.44 microm. <i>Optics Letters</i> , 1997 , 22, 466-8	3	41
153	SESAM mode-locked red praseodymium laser. <i>Optics Letters</i> , 2014 , 39, 6939-41	3	40
152	SESAMs for high-power femtosecond modelocking: power scaling of an Yb:LuScOlthin disk laser to 23 W and 235 fs. <i>Optics Express</i> , 2011 , 19, 20288-300	3.3	39
151	1.9- m and 2.0- m laser diode pumping of Cr(2+) :ZnSe and Cr(2+) :CdMnTe. <i>Optics Letters</i> , 2002 , 27, 1034	4 3 6	39
150	Time-resolved spectra of excited-state absorption in Er3+ doped YAlO3. <i>Applied Physics A: Solids and Surfaces</i> , 1992 , 54, 404-410		39
149	Spectroscopic characterization of V4+ -doped Al2O3 and YAlO3. <i>Journal of Luminescence</i> , 1993 , 55, 55-6	5 3 .8	39

148	Femtosecond Yb:Lu(2)O(3) thin disk laser with 63 W of average power. Optics Letters, 2009, 34, 2823-5	3	38
147	Spectroscopic properties of Er3+:YAG at 300B50 K and their effects on the 1.6 fb laser transitions. <i>Applied Physics B: Lasers and Optics</i> , 2008 , 91, 249-256	1.9	38
146	Intracavity frequency doubling of a continuous-wave, diode-laser-pumped neodymium lanthanum scandium borate laser. <i>Optics Letters</i> , 1994 , 19, 1436-8	3	37
145	227-fs pulses from a mode-locked Yb:LuScO3 thin disk laser. <i>Optics Express</i> , 2009 , 17, 10725-30	3.3	36
144	Up-conversion processes in laser crystals. <i>Journal of Luminescence</i> , 1997 , 72-74, 1-3	3.8	36
143	Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935 nm. <i>Optics Communications</i> , 2007 , 275, 170-1	72	36
142	In-band pumping of Nd-vanadate thin-disk lasers. Applied Physics B: Lasers and Optics, 2008, 91, 415-419	1.9	36
141	Laser activity at 1.18, 1.07, and 0.97 microm in the low-phonon-energy hosts KPb2Br5 and RbPb2Br5 doped with Nd3+. <i>Optics Letters</i> , 2005 , 30, 729-31	3	36
140	Yb-doped mixed sesquioxides for ultrashort pulse generation in the thin disk laser setup. <i>Applied Physics B: Lasers and Optics</i> , 2013 , 113, 13-18	1.9	35
139	Performance and wavelength tuning of green emitting terbium lasers. <i>Optics Express</i> , 2017 , 25, 5716-57	7343	34
138	Passively mode locked femtosecond Tm:Sc2O3 laser at 2.1 fh. Optics Letters, 2012, 37, 437-9	3	34
137	High resolution spectroscopy of Cr 4+ doped Y 3 Al 5 O 12. <i>Journal of Luminescence</i> , 1994 , 60-61, 192-19	9 6 .8	34
136	Diode pumped high power operation of a femtosecond laser inscribed Yb:YAG waveguide laser [Invited]. <i>Optical Materials Express</i> , 2011 , 1, 428	2.6	33
135	Efficient continuous wave deep ultraviolet Pr3+:LiYF4 laser at 261.3 nm. <i>Applied Physics Letters</i> , 2011 , 99, 181103	3.4	33
134	Continuous wave and mode-locked Yb3+:Y2O3 ceramic thin disk laser. <i>Optics Express</i> , 2012 , 20, 10847-5	52 3.3	33
133	Efficient upconversion-pumped continuous wave Er3+:LiLuF4 lasers. <i>Optical Materials</i> , 2015 , 42, 167-17	33.3	32
132	Efficient green continuous-wave lasing of blue-diode-pumped solid-state lasers based on praseodymium-doped LiYF4. <i>Applied Optics</i> , 2010 , 49, 3864-8	0.2	32
131	Spectroscopy, excited-state absorption and stimulated emission in Pr3+-doped Gd2SiO5 and Y2SiO5 crystals. <i>Journal of Luminescence</i> , 1997 , 71, 27-35	3.8	32

130	Lu2S3:Ce3+, A new red luminescing scintillator. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1998 , 134, 304-309	1.2	32
129	Multipass pumped Nd-based thin-disk lasers: continuous-wave laser operation at 1.06 and 0.9 microm with intracavity frequency doubling. <i>Applied Optics</i> , 2007 , 46, 8256-63	1.7	32
128	Efficient laser operation of Pr3+, Mg2+:SrAl12O19. Optics Letters, 2012, 37, 4889-91	3	31
127	Passive Q Switching of a Diode-Pumped 946-nm Nd:YAG Laser with 1.6-W Average Output Power. <i>Applied Optics</i> , 1998 , 37, 7076-9	1.7	31
126	Er3+:YLiF4 continuous wave cascade laser operation at 1620 and 2810 nm at room temperature. <i>Applied Physics Letters</i> , 1993 , 62, 541-543	3.4	31
125	Spectroscopy and laser operation of Sm(3+)-doped lithium lutetium tetrafluoride (LiLuF(4)) and strontium hexaaluminate (SrAl(12)O(19)). <i>Optics Express</i> , 2015 , 23, 21118-27	3.3	30
124	Crystalline Pr:SrAl12O19 waveguide laser in the visible spectral region. <i>Optics Letters</i> , 2011 , 36, 4620-2	3	30
123	First ceramic laser in the visible spectral range. Optical Materials Express, 2011, 1, 1511	2.6	30
122	Intracavity frequency-doubled diode-pumped Nd : LaSc3(BO3)4 lasers. <i>Applied Physics B: Lasers and Optics</i> , 1997 , 64, 301-305	1.9	30
121	Spectroscopy of Ni2+-doped garnets and perovskites for solid state lasers. <i>Journal of Luminescence</i> , 1991 , 48-49, 564-568	3.8	30
120	Wide wavelength tunability and green laser operation of diode-pumped Pr3+:KY3F10. <i>Optics Express</i> , 2013 , 21, 31274-81	3.3	29
119	Photoconductivity in Yb-doped oxides at high excitation densities. <i>Applied Physics B: Lasers and Optics</i> , 2011 , 102, 765-768	1.9	29
118	Amplification in epitaxially grown Er:(Gd,Lu)_2O_3 waveguides for active integrated optical devices. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2008 , 25, 1850	1.7	29
117	In-band fiber-laser-pumped Er:YVO[laser emitting around 1.6 fh. Optics Letters, 2011, 36, 1188-90	3	28
116	Excited state absorption and stimulated emission of Nd3+ in crystals III: LaSc3(BO3)4, CaWO4, and YLiF4. <i>Applied Physics B: Lasers and Optics</i> , 1999 , 68, 67-72	1.9	28
115	Type-I non-critically phase-matched second-harmonic generation in Gd1-xYxCa4O(BO3)3. <i>Applied Physics B: Lasers and Optics</i> , 1999 , 68, 1143-1146	1.9	28
114	Tm3+: GdVO4la new efficient medium for diode-pumped 2lth lasers. <i>Quantum Electronics</i> , 1997 , 27, 13-14	1.8	27
113	Holmium-doped Lu2O3, Y2O3, and Sc2O3 for lasers above 2.1 fh. Optics Express, 2013, 21, 3926-31	3.3	26

112	Self-referenceable frequency comb from an ultrafast thin disk laser. Optics Express, 2012, 20, 9650-6	3.3	26
111	Lasing characteristics of a diode-pumped Nd3+: CaGdAlO4crystal. <i>Quantum Electronics</i> , 1997 , 27, 15-17	1.8	26
110	Efficient laser operation of diode-pumped Pr3+,Mg2+:SrAl12O19. <i>Applied Physics B: Lasers and Optics</i> , 2014 , 116, 109-113	1.9	25
109	Diode-pumped continuous-wave green upconversion lasing of Er(3+):LiLuF(4) using multipass pumping. <i>Optics Letters</i> , 2002 , 27, 1699-701	3	25
108	Spectroscopic characterisation of the upconversion avalanche mechanism in Pr3+,Yb3+:BaY2F8. <i>Optical Materials</i> , 2003 , 24, 537-545	3.3	24
107	Excited state properties of ferrate (VI) doped crystals of K2SO4 and K2CrO4. <i>Journal of Luminescence</i> , 1995 , 65, 293-301	3.8	24
106	Spectroscopic properties and lasing of Nd:Gd0.5La0.5VO4 crystals. <i>Optics Communications</i> , 1996 , 124, 63-68	2	24
105	Spectroscopy of upper energy levels in an Er^3+-doped amorphous oxide. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2013 , 30, 663	1.7	23
104	Excited state absorption and stimulated emission of Nd3+ in crystals. Part I: Y3Al5O12, YAlO3, and Y2O3. <i>Applied Physics B: Lasers and Optics</i> , 1998 , 67, 151-156	1.9	23
103	Emission of octahedrally coordinated Mn3+ in garnets. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 1998 , 54, 1741-1749	4.4	23
102	Semiconductor laser pumping of continuous-wave Pr3+[hyphen (true graphic)]doped ZBLAN fibre laser. <i>Electronics Letters</i> , 2005 , 41, 794	1.1	23
101	A 180 mW Nd:LaSc3(BO3)4 single-frequency TEM00 microchip laser pumped by an injection-locked diode-laser array. <i>Applied Physics B: Lasers and Optics</i> , 1994 , 58, 381-388	1.9	23
100	30 Hz operation of 2EHo and Tm-lasers. <i>Optics Communications</i> , 1990 , 80, 47-51	2	22
99	Q-switched operation of a femtosecond-laser-inscribed Yb:YAG channel waveguide laser using carbon nanotubes. <i>Optics Express</i> , 2015 , 23, 7999-8005	3.3	21
98	Continuous-wave Pr[]+:BaYE[]and Pr[]+:LiYF[]asers in the cyan-blue spectral region. <i>Optics Letters</i> , 2014 , 39, 5158-61	3	21
97	Spectroscopic characterization and laser performance of Pr,Mg:CaAl_12O_19. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2014 , 31, 349	1.7	21
96	Laser-written waveguides in KTP for broadband Type II second harmonic generation. <i>Optics Express</i> , 2012 , 20, 22308-13	3.3	21
95	Continuous-wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration. <i>Applied Physics B: Lasers and Optics</i> , 2007 , 87, 217-220	1.9	21

94	Excited state absorption, energy levels, and thermal conductivity of Er3+:YAB. <i>Applied Physics B: Lasers and Optics</i> , 2008 , 92, 567-571	1.9	21
93	Optical spectroscopy of Cr3+ in ScF3 and Sc2O3. <i>Journal of Luminescence</i> , 1988 , 39, 259-268	3.8	21
92	Ultrashort pulse generation from diode pumped mode-locked Yb3+:sesquioxide single crystal lasers. <i>Optics Express</i> , 2011 , 19, 2904-9	3.3	20
91	Low threshold monocrystalline Nd:(Gd, Lu)2O3 channel waveguide laser. <i>Optics Express</i> , 2009 , 17, 4412	-83.3	20
90	Switching of emissivity and photoconductivity in highly doped Yb3+:Y2O3 and Lu2O3 ceramics. <i>Applied Physics Letters</i> , 2007 , 90, 201901	3.4	20
89	Continuous wave Praseodymium solid-state lasers 2007,		20
88	Continuous-wave laser action of Yb3+-doped lanthanum scandium borate. <i>Applied Physics B: Lasers and Optics</i> , 2005 , 80, 159-163	1.9	20
87	Optical Measurement of Narrow Band Rare-Earth 4f Levels with Energies Greater than the Band Gap of the Host. <i>Physical Review Letters</i> , 1998 , 80, 1537-1540	7.4	20
86	Laser oscillation in Yb:YAG waveguide beam-splitters with variable splitting ratio. <i>Optics Letters</i> , 2015 , 40, 1753-6	3	19
85	Excited-state absorption and stimulated emission measurements in Cr4+:forsterite. <i>Journal of Luminescence</i> , 1997 , 75, 319-325	3.8	19
84	Ultrashort pulse Yb:LaSc(3)(BO(3))(4) mode-locked oscillator. Optics Express, 2007, 15, 15539-44	3.3	19
83	Spectroscopic properties of Cr-doped Sc2O3. <i>Journal of Luminescence</i> , 2000 , 87-89, 1122-1125	3.8	19
82	Mode locking of room-temperature cw thulium and holmium lasers. <i>Applied Physics Letters</i> , 1992 , 60, 1161-1162	3.4	19
81	Efficient visible laser operation of Pr,Mg:SrAl12O19 channel waveguides. <i>Optics Letters</i> , 2013 , 38, 2698	-7301	18
80	Efficient green generation by intracavity frequency doubling of an optically pumped semiconductor disk laser. <i>Applied Physics B: Lasers and Optics</i> , 2007 , 87, 95-99	1.9	18
79	Spectroscopic properties of Cr4+-doped LiAlO2. <i>Applied Physics B: Lasers and Optics</i> , 1995 , 61, 33-36	1.9	18
78	Luminescence and time-resolved excited state absorption measurements in Pr3+ -doped La2Be2O5 and KGd (WO4)2 crystals. <i>Optical Materials</i> , 1996 , 5, 111-118	3.3	18
77	Polarized and time-resolved measurements of excited-state absorption and stimulated emission in Ti:YAlO3 and Ti:Al2O3. <i>Applied Physics A: Solids and Surfaces</i> , 1993 , 57, 309-313		18

Pulsed laser action of Pr:GdLiF4 at room temperature. <i>Applied Physics B, Photophysics and Laser Chemistry</i> , 1993 , 57, 239-241		18	
Passively Q-switched Pr:YLF laser with a Co:MgAlO saturable absorber. <i>Optics Letters</i> , 2017 , 42, 4687-4	1690	17	
Europium-doped sesquioxide thin films grown on sapphire by PLD. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2003 , 105, 30-33	3.1	17	
540 mW of blue output power at 425 nm generated by intracavity frequency doubling an upconversion-pumped Er3+:YLiF4 laser. <i>Applied Physics Letters</i> , 1998 , 73, 139-141	3.4	17	
Excited state absorption and laser potential of Mn5+-doped Li3PO4. <i>Chemical Physics Letters</i> , 1997 , 265, 264-270	2.5	16	
Pulsed laser deposition of Eu:Y2O3 thin films on (0001) #Al2O3. <i>Applied Physics A: Materials Science and Processing</i> , 2005 , 80, 209-216	2.6	16	
Highly efficient continuous wave blue second-harmonic generation in fs-laser written periodically poled Rb:KTiOPOIwaveguides. <i>Optics Letters</i> , 2014 , 39, 1274-7	3	15	
Avalanche up-conversion processes in Pr, Yb-doped materials. <i>Journal of Alloys and Compounds</i> , 2000 , 300-301, 65-70	5.7	15	
Soliton mode-locked Nd:YAlO_3 laser at 930 nm. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1998 , 15, 1663	1.7	15	
cw laser action of Er3+ in double sensitized fluoroaluminate glass at room temperature. <i>Applied Physics Letters</i> , 1988 , 52, 255-256	3.4	15	
Prospects of Holmium-doped fluorides as gain media for visible solid state lasers. <i>Optical Materials Express</i> , 2015 , 5, 88	2.6	14	
Thin-disk laser operation of Pr□+,Mg□+:SrAlΦ□ <i>Optics Letters</i> , 2014 , 39, 1322-5	3	14	
Nd:GSAG-pulsed laser operation at 943 nm and crystal growth. <i>Applied Physics B: Lasers and Optics</i> , 2007 , 89, 305-310	1.9	14	
Optical pump-probe processes in Nd^3+-doped KPb2Br5, RbPb2Br5, and KPb2Cl5. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2005 , 22, 2610	1.7	14	
Pump modulation frequency resolved excited state absorption spectra in Tm3+ doped YLF. <i>Applied Physics B: Lasers and Optics</i> , 2003 , 77, 817-822	1.9	14	
Tunable single frequency thulium:YAG microchip laser with external feedback. <i>Applied Optics</i> , 1998 , 37, 3268-71	1.7	14	
Compact diode pumped cw solid-state lasers in the visible spectral region. <i>Optical Materials</i> , 1999 , 11, 205-216	3.3	14	
Characterization of crystalline europium doped H2O3 PLD-films grown on HAl2O3. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2003 , 105, 25-29	3.1	13	
	Chemistry, 1993, 57, 239-241 Passively Q-switched Pr:YLF laser with a Co:MgAlO saturable absorber. Optics Letters, 2017, 42, 4687-6 Europium-doped sesquioxide thin films grown on sapphire by PLD. Materials Science and Engineering 8: Solid-State Materials for Advanced Technology, 2003, 105, 30-33 540 mW of blue output power at 425 nm generated by intracavity frequency doubling an upconversion-pumped Er3+;YLiF4 laser. Applied Physics Letters, 1998, 73, 139-141 Excited state absorption and laser potential of Mn5+-doped Li3PO4. Chemical Physics Letters, 1997, 2655, 264-270 Pulsed laser deposition of Eu:Y2O3 thin films on (0001) FAI2O3. Applied Physics A: Materials Science and Processing, 2005, 80, 209-216 Highly efficient continuous wave blue second-harmonic generation in fs-laser written periodically poled Rb:KTiOPOliwaveguides. Optics Letters, 2014, 39, 1274-7 Avalanche up-conversion processes in Pr, Yb-doped materials. Journal of Alloys and Compounds, 2000, 300-301, 65-70 Soliton mode-locked Nd:YAIO_3 laser at 930 nm. Journal of the Optical Society of America B: Optical Physics, 1998, 15, 1663 cw laser action of Er3+ in double sensitized fluoroaluminate glass at room temperature. Applied Physics Letters, 1988, 52, 255-256 Prospects of Holmium-doped fluorides as gain media for visible solid state lasers. Optical Materials Express, 2015, 5, 88 Thin-disk laser operation at 943 nm and crystal growth. Applied Physics B: Lasers and Optics, 2007, 89, 305-310 Optical pump-probe processes in Nd^3+-doped KPb2Br5, RbPb2Br5, and KPb2Cl5. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 2610 Pump modulation frequency resolved excited state absorption spectra in Tm3+ doped YLF. Applied Physics B: Lasers and Optics, 2003, 77, 817-822 Tunable single frequency thulium:YAG microchip laser with external feedback. Applied Optics, 1998, 37, 3268-71 Compact diode pumped cw solid-state lasers in the visible spectral region. Optical Materials, 1999, 11, 205-216	Chemistry, 1993, 57, 239-241 Passively Q-switched Pr:YLF laser with a Co:MgAlO saturable absorber. Optics Letters, 2017, 42, 4687-4690 Europium-doped sesquioxide thin films grown on sapphire by PLD. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 105, 30-33 3.3 540 mW of blue output power at 425 nm generated by intracavity frequency doubling an upconversion-pumped Er3+:YLIF4 laser. Applied Physics Letters, 1998, 73, 139-141 Excited state absorption and laser potential of Mn5+-doped Li3PO4. Chemical Physics Letters, 1997, 2-5 Pulsed laser deposition of Eu:Y2O3 thin films on (0001) EAI2O3. Applied Physics A: Materials Science and Processing, 2005, 80, 209-216 Highly efficient continuous wave blue second-harmonic generation in fs-laser written periodically poled Rb:KTiOPOBvaveguides. Optics Letters, 2014, 39, 1274-7 Avalanche up-conversion processes in Pr, Yb-doped materials. Journal of Alloys and Compounds, 2000, 300-301, 65-70 Sollton mode-locked Nd:YAIO_3 laser at 930 nm. Journal of the Optical Society of America B: Optical Physics, 1998, 15, 1663 cw laser action of Er3+ in double sensitized fluoroaluminate glass at room temperature. Applied Physics Letters, 1988, 52, 255-256 Prospects of Holmium-doped fluorides as gain media for visible solid state lasers. Optical Materials Express, 2015, 5, 88 Thin-disk laser operation of PrII+,MgII+:SrAIDIOptics Letters, 2014, 39, 1322-5 3. Nd:CSAG-pulsed laser operation at 943 nm and crystal growth. Applied Physics B: Lasers and Optics, 2007, 89, 305-310 Optical Dominarica B: Optical Physics, 2005, 22, 2610 Pump modulation frequency resolved excited state absorption spectra in Tm3+ doped YLF. Applied Physics B: Lasers and Optics, 2003, 77, 817-822 Tunable single frequency thulium:YAG microchip laser with external feedback. Applied Optics, 1998, 17, 2268-71 Compact diode pumped cw solid-state lasers in the visible spectral region. Optical Materials, 1999, 11, 205-216	Passively Q-switched PrrYLF laser with a Co:MgAlO saturable absorber. Optics Letters, 2017, 42, 4687-4690 17 Europium-doped sesquioxide thin films grown on sapphire by PLD. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 105, 30-33 31 17 S40 mW of blue output power at 425 nm generated by intracavity frequency doubling an upconversion-pumped Er3+YLIF4 laser. Applied Physics Letters, 1998, 73, 139-141 34 17 Excited state absorption and laser potential of Mn5+-doped Li3PO4. Chemical Physics Letters, 1997, 2-5 16 Excited state absorption of EurY2O3 thin films on (0001) BAI2O3. Applied Physics A: Materials Science and Processing, 2005, 80, 209-216 Highly efficient continuous wave blue second-harmonic generation in fs-laser written periodically poled Rb:KTiOPOfiwaveguides. Optics Letters, 2014, 39, 1274-7 Avalanche up-conversion processes in Pr, Yb-doped materials. Journal of Alloys and Compounds, 2000, 300-301, 65-70 Soliton mode-locked Nd:YAIO_3 laser at 930 nm. Journal of the Optical Society of America B: Optical Physics, 1998, 15, 1663 cw laser action of Er3+ in double sensitized fluoroaluminate glass at room temperature. Applied Physics Letters, 1998, 52, 255-256 Prospects of Holmium-doped fluorides as gain media for visible solid state lasers. Optical Materials 2.6 Nd:CSAC-pulsed laser operation of Pril-Mgfit-SrAIDIOptics Letters, 2014, 39, 1322-5 Nd:CSAC-pulsed laser operation at 943 nm and crystal growth. Applied Physics B: Lasers and Optics, 2007, 89, 305-310 Optical pump-probe processes in Nd·3+-doped KPb2Br5, RbPb2Br5, and KPb2Cl5. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 2610 Pump modulation frequency resolved excited state absorption spectra in Tm3+ doped YLF. Applied Physics B: Lasers and Optics, 2003, 77, 817-822 Tunable single frequency thulium:YAG microchip laser with external feedback. Applied Optics. 1998, 31, 3268-71 Compact diode pumped cw solid-state lasers in the visible spectral region. Optical Materials, 1

58	Energy transfer and inversion saturation in Tm, Ho: YAG. Journal of Luminescence, 1988, 40-41, 509-510	3.8	13
57	Correction of reabsorption artifacts in fluorescence spectra by the pinhole method. <i>Optics Letters</i> , 2010 , 35, 1524-6	3	12
56	Power scaling potential of Yb:NGW in thin disk laser configuration. <i>Applied Physics B: Lasers and Optics</i> , 2008 , 91, 25-28	1.9	12
55	Rare-earth-doped GVO films grown by pulsed laser deposition. <i>Optical Materials</i> , 2006 , 28, 681-684	3.3	12
54	Nd3+ doped Sc2O3 waveguiding film produced by pulsed laser deposition. <i>Optical Materials</i> , 2006 , 28, 883-887	3.3	12
53	Efficient intracavity frequency doubling of a passively mode-locked diode-pumped neodymium lanthanum scandium borate laser. <i>Optics Letters</i> , 1996 , 21, 1567-9	3	11
52	Infrared excited state absorption of Ni 2+ doped crystals. <i>Journal of Luminescence</i> , 1994 , 60-61, 197-200	3.8	11
51	Dy3+:Lu2O3 as a novel crystalline oxide for mid-infrared laser applications. <i>Optical Materials Express</i> , 2018 , 8, 3447	2.6	11
50	High-intracavity-power thin-disk laser for the alignment of molecules. <i>Optics Express</i> , 2015 , 23, 28491-50	99 3	10
49	Excited state dynamics in sensitized photon avalanche processes. <i>Journal of Luminescence</i> , 1998 , 76-77, 441-446	3.8	10
48	Two-dimensional growth of lattice matched Nd-doped (Gd,Lu)2O3 films on Y2O3 by pulsed laser deposition. <i>Applied Physics Letters</i> , 2008 , 93, 053108	3.4	10
47	Efficient room temperature continuous-wave operation of an Yb3+:Sc2O3 crystal laser at 1041.6 and 1094.6 nm. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2005 , 202, R19-R21	1.6	10
46	Experimental determination of radiative-transition rates and quantum efficiencies in Er3+: YAlO3. <i>Optics Communications</i> , 1995 , 118, 250-254	2	10
45	Passive Q-switching and mode locking of 2-um lasers 1993 , 1864, 186		10
44	Excited state absorption measurements and laser potential of Cr4+ doped Ca2GeO4. <i>Applied Physics B: Lasers and Optics</i> , 1997 , 64, 647-650	1.9	9
43	Nondestructive measurement of the propagation losses in active planar waveguides. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2007 , 24, 1571	1.7	9
42	Room-temperature external cavity GaSb-based diode laser around 2.13th. <i>Applied Physics Letters</i> , 2004 , 85, 5825-5826	3.4	9
41	On the problem of M2 analysis using Shack-Hartmann measurements. <i>Journal Physics D: Applied Physics</i> , 2001 , 34, 2414-2419	3	9

(2006-1998)

40	Visible double-clad upconversion fibre laser. <i>Electronics Letters</i> , 1998 , 34, 565	1.1	9
39	Stimulated emission and excited-state absorption at room temperature on the 550 nm-laser transition in Er 3+ doped YAlO 3. <i>Journal of Luminescence</i> , 1994 , 60-61, 842-845	3.8	9
38	Lasing of Nd3+ in sapphire. Laser and Photonics Reviews, 2016, 10, 510-516	8.3	9
37	Efficient OPSL-pumped mode-locked Yb:Lu2O3 laser with 67% optical-to-optical efficiency. <i>Scientific Reports</i> , 2016 , 6, 19090	4.9	8
36	Crystal growth, spectroscopic and laser characterization of Nd: CSB crystals. <i>Journal of Luminescence</i> , 1997 , 72-74, 826-828	3.8	8
35	Nd:sapphire channel waveguide laser. <i>Optical Materials Express</i> , 2017 , 7, 2361	2.6	7
34	Spectroscopy and laser operation of Nd-doped mixed sesquioxides (Lu1⊠ Sc x)2O3. <i>Applied Physics B: Lasers and Optics</i> , 2012 , 108, 475-478	1.9	7
33	Energy transfer in crystalline Er3+,Yb3+:Sc2O3. Optical Materials, 2009, 31, 1636-1639	3.3	7
32	High-temperature growth and spectroscopic characterization of Er,Yb:YAl3(BO3)4 epitaxial thin layers. <i>Optical Materials</i> , 2010 , 32, 1377-1379	3.3	7
31	Excited-state absorption and laser potential of Mn^6+-doped BaSO_4 crystals. <i>Journal of the Optical Society of America B: Optical Physics</i> , 1997 , 14, 2373	1.7	7
30	Spectroscopy and excited-state absorption of Ti4+:Li4Ge5O12 and Ti4+:Y2SiO5. <i>Journal of Luminescence</i> , 1997 , 72-74, 208-210	3.8	7
29	Excited state absorption and its influence on the laser behavior of Cr4+-doped garnets. <i>Journal of Luminescence</i> , 1997 , 72-74, 222-223	3.8	7
28	LiYF4 liquid-phase epitaxy using an inverted slider geometry. <i>Journal of Crystal Growth</i> , 1999 , 198-199, 564-567	1.6	7
27	Spectral narrowing of Yb:YAG waveguide lasers through hybrid integration with ultrafast laser written Bragg gratings. <i>Optics Express</i> , 2015 , 23, 20195-202	3.3	6
26	Lidar Research Network Water Vapor and Wind. Meteorologische Zeitschrift, 2003, 12, 5-24	3.1	6
25	Growth and diode-pumped laser operation of Pr3+:□(Y0.5,Gd0.5)F3 at various transitions. <i>Optics Letters</i> , 2015 , 40, 2699-702	3	5
24	Experimental study of the output dynamics of intracavity frequency doubled optically pumped semiconductor disk lasers. <i>Applied Physics Letters</i> , 2008 , 92, 101107	3.4	5
23	Continuous-wave and mode-locked lasers based on cubic sesquioxide crystalline hosts 2006,		5

22	First-principles analysis for the optical absorption spectra of metal ions in solids. <i>International Journal of Quantum Chemistry</i> , 2004 , 99, 488-494	2.1	5
21	Stabilization of intracavity frequency-doubled lasers with type I phase matching. <i>Optics Letters</i> , 2003 , 28, 2100-2	3	5
20	Crystalline growth of cubic (Eu, Nd):Y2O3 thin films on \oplus Al2O3 by pulsed laser deposition. <i>Applied Physics A: Materials Science and Processing</i> , 2005 , 80, 627-630	2.6	5
19	Efficient laser operation of Nd3+:Lu2O3at various wavelengths between 917 nm and 1463 nm. <i>Laser Physics</i> , 2016 , 26, 084003	1.2	5
18	Quenching processes in Yb lasers: correlation to the valence stability of the Yb ion 2009,		4
17	Epitaxial growth by pulsed laser deposition of Er-doped Sc2O3 films on sesquioxides monitored in situ by reflection high energy electron diffraction. <i>Applied Physics Letters</i> , 2007 , 91, 083103	3.4	4
16	Novel rare earth solid state lasers with emission wavelengths in the visible spectral range 2013,		3
15	Lasers and Coherent Light Sources 2012 , 641-1046		3
14	Epitaxial layer-by-layer growth of Yb:YAG and YbAG PLD-films. <i>Applied Physics A: Materials Science and Processing</i> , 2008 , 93, 387-391	2.6	3
13	Degradation of Laser Performance in Yb-Doped Oxide Thin-Disk Lasers at High Inversion Densities 2009 ,		3
12	PLD-grown Yb-doped Sesquioxide Films on Sapphire and Quartz Substrates. <i>Journal of Physics:</i> Conference Series, 2007 , 59, 462-465	0.3	2
11	Time-resolved measurement of excited-state populations in atomic systems. <i>Physica Status Solidi A</i> , 1992 , 130, K121-K123		2
10	Photoconductivity Measurements Indicating a Nonlinear Loss Mechanism in Highly Yb-doped Oxides 2008 ,		2
9	Temperature development in Yb:YAG thin-disk lasers at high inversion densities confirming nonlinear losses 2013 ,		1
8	Method for the determination of dopant concentrations of luminescent ions. <i>Optics Letters</i> , 2011 , 36, 4500-2	3	1
7	Photoconductivity in Yb-doped materials at high excitation densities and its effect on highly Yb-doped thin-disk lasers 2009 ,		1
6	Advances in Solid-State Laser Materials. ECS Transactions, 2009, 25, 287-290	1	1
5	Up-conversion to the Conduction Band in highly doped Yb:YAG and Yb:Y2O3 and its effect on Thin-Disk Lasers 2007 ,		1

LIST OF PUBLICATIONS

- Excited state absorption of Fe3+ in garnet crystal. Radiation Effects and Defects in Solids, 1995, 136, 19-2@.9 4
- Ultrafast thin disk lasers: sub-100 fs pulse duration and carrier envelope offset detection. EPJ Web 0.3 of Conferences, 2013, 41, 10009
- Nonlinear losses in photoconductive Yb:YAG laser materials: identification of photocarrier properties by non-steady-state photoEMF. Applied Physics B: Lasers and Optics, 2014, 117, 731-735
- 1.9
- Measurement of the Wigner distribution of a helium neon laser with a spherical aberration and a tapered semiconductor laser using moving slit technology 2003, 4932, 560