Guenter Huber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6577583/publications.pdf

Version: 2024-02-01

252 papers

12,646 citations

65 h-index 33889

255 all docs 255 docs citations

255 times ranked 4148 citing authors

g-index

#	Article	IF	CITATIONS
1	Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG. IEEE Journal of Quantum Electronics, 1988, 24, 924-933.	1.9	325
2	Spectroscopic characterization and laser performance of diode-laser-pumped Nd: GdVO4. Applied Physics B: Lasers and Optics, 1994, 58, 373-379.	2.2	320
3	Pulsed laser operation of Yb-doped KY(WO_4)_2 and KGd(WO_4)_2. Optics Letters, 1997, 22, 1317.	3.3	295
4	CW laser performance of Yb and Er,Yb doped tungstates. Applied Physics B: Lasers and Optics, 1997, 64, 409-413.	2.2	263
5	Out of the blue: semiconductor laser pumped visible rareâ€earth doped lasers. Laser and Photonics Reviews, 2016, 10, 548-568.	8.7	252
6	All-solid-state continuous-wave frequency-doubled Nd:YAG–BiBO laser with 28-W output power at 473 nm. Optics Letters, 2003, 28, 432.	3.3	226
7	Single mode Tm and Tm, Ho: LuAG lasers for LIDAR applications. Laser Physics Letters, 2004, 1, 285-290.	1.4	198
8	Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals. Applied Physics B: Lasers and Optics, 1995, 61, 151-158.	2.2	186
9	Femtosecond thin-disk laser with 141 W of average power. Optics Letters, 2010, 35, 2302.	3.3	173
10	High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation. Applied Physics B: Lasers and Optics, 2009, 97, 281-295.	2.2	164
11	Diode pumping of a continuous-wave Pr^3+-doped LiYF_4 laser. Optics Letters, 2004, 29, 2638.	3.3	155
12	High-power continuous-wave upconversion fiber laser at room temperature. Optics Letters, 1997, 22, 808.	3.3	152
13	Broadly tunable high-power Yb:Lu_2O_3 thin disk laser with 80% slope efficiency. Optics Express, 2007, 15, 7075.	3.4	150
14	Power scaling of semiconductor laser pumped Praseodymium-lasers. Optics Express, 2007, 15, 5172.	3.4	149
15	High-power red, orange, and green Pr^3+:LiYF_4 lasers. Optics Letters, 2014, 39, 3193.	3.3	147
16	Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser. Applied Physics B: Lasers and Optics, 2009, 97, 251-255.	2.2	143
17	Spectroscopic properties and diode pumped 1.6 \hat{l} 4m laser performance in Yb-codoped Er: Y3Al5O12 and Er: Y2SiO5. Optics Communications, 1995, 118, 557-561.	2.1	142
18	New Oxide Crystals for Solid State Lasers. Crystal Research and Technology, 1999, 34, 255-260.	1.3	141

#	Article	IF	Citations
19	Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser. Optics Express, 2010, 18, 16035.	3.4	140
20	Thermal and laser properties of Yb:LuAG for kW thin disk lasers. Optics Express, 2010, 18, 20712.	3.4	140
21	Efficient visible laser emission of GaN laser diode pumped Pr-doped fluoride scheelite crystals. Optics Express, 2008, 16, 15932.	3.4	135
22	Efficient Continuous Wave-laser emission of Pr3+-doped fluorides at room temperature. Applied Physics B: Lasers and Optics, 1994, 58, 149-151.	2.2	134
23	Structural, spectroscopic, and tunable laser properties of Yb3+-dopedNaGd(WO4)2. Physical Review B, 2006, 74, .	3.2	134
24	Green upconversion continuous wave Er3+:LiYF4laser at room temperature. Applied Physics Letters, 1994, 65, 383-384.	3.3	129
25	Rare-earth-doped sesquioxides. Journal of Luminescence, 2000, 87-89, 973-975.	3.1	127
26	Efficient high-power continuous wave Er:Lu_2O_3laser at 285Âμm. Optics Letters, 2012, 37, 2568.	3.3	126
27	Watt-level passively Q-switched Er:Lu_2O_3 laser at 284  μm using MoS_2. Optics Letters, 2016, 41,	5403	126
28	Investigation of diode-pumped 28-νm Er:LiYF_4 lasers with various doping levels. Optics Letters, 1996, 21, 585.	3.3	120
29	Continuous wave laser operation of Yb3+:YVO4. Applied Physics B: Lasers and Optics, 2004, 79, 543-546.	2.2	119
30	Laser pumping of Ho-, Tm-, Er-doped garnet lasers at room temperature. IEEE Journal of Quantum Electronics, 1988, 24, 920-923.	1.9	113
31	Spectroscopy and green upconversion laser emission of Er3+â€doped crystals at room temperature. Journal of Applied Physics, 1994, 76, 1413-1422.	2.5	113
32	Growth of high-melting sesquioxides by the heat exchanger method. Journal of Crystal Growth, 2002, 237-239, 879-883.	1.5	110
33	Thermal analysis and efficient high power continuous-wave andÂmode-locked thin disk laser operation of Yb-doped sesquioxides. Applied Physics B: Lasers and Optics, 2011, 102, 509-514.	2.2	107
34	Near-infrared emission of Cr4+-doped garnets: Lifetimes, quantum efficiencies, and emission cross sections. Physical Review B, 1995, 51, 17323-17331.	3.2	103
35	Spectroscopic properties and efficient diode-pumped laser operation of neodymium-doped lanthanum scandium borate. IEEE Journal of Quantum Electronics, 1994, 30, 913-917.	1.9	102
36	Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc_3(BO_3)_4 and GdVO_4 laser crystals. Journal of the Optical Society of America B: Optical Physics, 1998, 15, 1052.	2.1	100

#	Article	IF	CITATIONS
37	Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3. Journal of Crystal Growth, 2008, 310, 1934-1938.	1.5	99
38	Visible laser emission of solid state pumped LiLuF4:Pr3+. Optics Express, 2007, 15, 992.	3.4	98
39	Rare-earth doped chalcogenide glass laser. Electronics Letters, 1996, 32, 666.	1.0	97
40	Czochralski growth and laser parameters of RE3+-doped Y2O3 and Sc2O3. Ceramics International, 2000, 26, 589-592.	4.8	96
41	Generation of 740??mW of blue light by intracavity frequency doubling with a first-order quasi-phase-matched KTiOPO_4 crystal. Optics Letters, 1999, 24, 205.	3.3	94
42	Semiconductor-laser-pumped high-power upconversion laser. Applied Physics Letters, 2006, 88, 061108.	3.3	94
43	Advances in up-conversion lasers based on Er3+ and Pr3+. Optical Materials, 2004, 26, 365-374.	3.6	93
44	Yellow laser performance of Dy^3+ in co-doped Dy,Tb:LiLuF_4. Optics Letters, 2014, 39, 6628.	3.3	91
45	Green upâ€conversion laser emission in Erâ€doped crystals at room temperature. Applied Physics Letters, 1993, 63, 2030-2031.	3.3	89
46	Nd:YAG waveguide laser with 1.3 W output power, fabricated byÂdirect femtosecond laser writing. Applied Physics B: Lasers and Optics, 2010, 100, 131-135.	2.2	88
47	Solid-state lasers: status and future [Invited]. Journal of the Optical Society of America B: Optical Physics, 2010, 27, B93.	2.1	88
48	Efficient continuous wave laser operation of Tb ³⁺ â€doped fluoride crystals in the green and yellow spectral regions. Laser and Photonics Reviews, 2016, 10, 335-344.	8.7	88
49	Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiJO 3 , \hat{I}^2 -BaB 2 O 4 , and LiB 3 O 5. Applied Physics B: Lasers and Optics, 1997, 65, 789-792.	2.2	87
50	Performance of a Cr:YAG laser. IEEE Journal of Quantum Electronics, 1993, 29, 2508-2512.	1.9	86
51	Passively Q-switched 180-ps Nd:LaSc_3(BO_3)_4 microchip laser. Optics Letters, 1996, 21, 405.	3.3	82
52	Optical properties of Nd^3+- and Tb^3+-doped KPb_2Br_5 and RbPb_2Br_5 with low nonradiative decay. Journal of the Optical Society of America B: Optical Physics, 2004, 21, 2117.	2.1	82
53	Excited state absorption and stimulated emission of Nd $3+$ in crystals. Part 2: YVO 4 , GdVO 4 , and Sr 5 (PO 4) 3 F. Applied Physics B: Lasers and Optics, 1998 , 67 , $549-553$.	2.2	80
54	Infrared and self-frequency doubled laser action in Yb3+-doped LiNbO3:MgO. Applied Physics Letters, 1999, 74, 3113-3115.	3.3	80

#	Article	IF	CITATIONS
55	175 fs Tm:Lu_2O_3 laser at 207 Âμm mode-locked using single-walled carbon nanotubes. Optics Express, 2012, 20, 5313.	3.4	80
56	Continuous-wave ultraviolet generation at 320 nm by intracavity frequency doubling of red-emitting Praseodymium lasers. Optics Express, 2006, 14, 3282.	3.4	77
57	Efficient diode-pumped laser operation of Tm:Lu_2O_3 around 2 Î⅓m. Optics Letters, 2011, 36, 948.	3.3	77
58	All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency mixer. Optics Letters, 1997, 22, 1461.	3.3	76
59	Continuous wave $1.6\mathrm{?m}$ laser action in Er doped garnets at room temperature?. Applied Physics B, Photophysics and Laser Chemistry, 1989, 49, 269-273.	1.5	75
60	Stimulated emission and laser action of Pr3+-doped YA1O3. Applied Physics B: Lasers and Optics, 1994, 58, 413-420.	2.2	74
61	Spectroscopy and excited-state absorption of Ni2+-doped MgAl2O4. Journal of Luminescence, 1997, 71, 265-268.	3.1	72
62	Continuous-wave simultaneous dual-wavelength operation at 912Ânm and 1063Ânm in Nd:GdVO4. Applied Physics B: Lasers and Optics, 2006, 86, 65-70.	2.2	71
63	Efficient femtosecond high power Yb:Lu_2O_3 thin disk laser. Optics Express, 2007, 15, 16966.	3.4	70
64	Crystal growth, spectroscopy, and diode pumped laser performance of Pr, Mg:SrAl12O19. Applied Physics B: Lasers and Optics, 2011, 102, 731-735.	2.2	67
65	Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3. Journal of Applied Physics, 2000, 87, 4056-4062.	2.5	65
66	Diode pumped laser operation and spectroscopy of Pr^3+:LaF_3. Optics Express, 2012, 20, 20387.	3.4	63
67	Continuous-wave and modelocked Yb:YCOB thin disk laser: first demonstration and future prospects. Optics Express, 2010, 18, 19201.	3.4	61
68	Green Er^3+:YLiF_4 upconversion laser at 551  nm with Yb^3+ codoping: a novel pumping scheme. C Letters, 1997, 22, 1412.	pţiçs 3.3	59
69	Electronic and vibronic transitions of the Cr4+-doped garnets Lu3Al5O12, Y3Al5O12, Y3Ga5O12 and Gd3Ga5O12. Journal of Luminescence, 1996, 68, 1-14.	3.1	58
70	Spectroscopic properties and laser emission of Er3+ in scandium silicates near 1.5 \hat{l} /4m. Optical Materials, 1998, 10, 9-17.	3.6	58
71	Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2Âμm. Applied Physics B: Lasers and Optics, 2011, 102, 19-24.	2.2	57
72	Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription. Optics Express, 2013, 21, 25501.	3.4	57

#	Article	IF	CITATIONS
73	SESAM mode-locked red praseodymium laser. Optics Letters, 2014, 39, 6939.	3.3	57
74	Quasi-continuous wave laser operation of Cr4+-doped Y2SiO5 at room temperature. Optics Communications, 1993, 101, 195-198.	2.1	56
75	Tunable room-temperature laser action of Cr4+-doped Y3ScxAl5?xO12. Applied Physics B: Lasers and Optics, 1994, 58, 153-156.	2.2	56
76	Roomâ€ŧemperature green laser emission of Er:LiYF4. Applied Physics Letters, 1993, 63, 729-730.	3.3	55
77	Investigation of diode-pumped 28-νm laser performance in Er:BaY_2F_8. Optics Letters, 1996, 21, 48.	3.3	55
78	Diode-pumped mode-locked Yb:LuScO_3 single crystal laser with 74 fs pulse duration. Optics Letters, 2010, 35, 511.	3.3	55
79	19-Âμm and 20-Âμm laser diode pumping of Cr^2+:ZnSe and Cr^2+:CdMnTe. Optics Letters, 2002, 27, 1034.	3.3	54
80	Femtosecond Yb:Lu_2O_3 thin disk laser with 63 W of average power. Optics Letters, 2009, 34, 2823.	3.3	54
81	SESAMs for high-power femtosecond modelocking: power scaling of an Yb:LuScO_3 thin disk laser to 23 W and 235 fs. Optics Express, 2011, 19, 20288.	3.4	54
82	Sub-100 femtosecond pulses from a SESAM modelocked thin disk laser. Applied Physics B: Lasers and Optics, 2012, 106, 559-562.	2.2	54
83	Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique. Applied Physics B: Lasers and Optics, 2011, 103, 1-4.	2.2	53
84	Diode-pumped continuous-wave, quasi-continuous-wave, and Q-switched laser operation of Yb3+,Tm3+:â€,YLiF4 at 1.5 and 2.3 Î⅓m. Journal of Applied Physics, 1998, 84, 5900-5904.	2.5	52
85	Passive Q-switching of 1.44 \hat{l} /4m and 1.34 \hat{l} /4m diode-pumped Nd:YAG lasers with a V:YAG saturable absorber. Applied Physics B: Lasers and Optics, 2003, 76, 245-247.	2.2	52
86	Yb-doped mixed sesquioxides for ultrashort pulse generation in the thin disk laser setup. Applied Physics B: Lasers and Optics, 2013, 113, 13-18.	2.2	52
87	227-fs pulses from a mode-locked†Yb:LuScO_3 thin disk laser. Optics Express, 2009, 17, 10725.	3.4	50
88	High quantum efficiency YbAG-crystals. Journal of Luminescence, 2007, 125, 238-247.	3.1	48
89	Intracavity frequency doubling of a continuous-wave, diode-laser-pumped neodymium lanthanum scandium borate laser. Optics Letters, 1994, 19, 1436.	3.3	47
90	High-power diode-pumped continuous-wave Nd^3+ lasers at wavelengths near 144 Âμm. Optics Letters, 1997, 22, 466.	3.3	47

#	Article	IF	Citations
91	Performance and wavelength tuning of green emitting terbium lasers. Optics Express, 2017, 25, 5716.	3.4	47
92	Efficient green continuous-wave lasing of blue-diode-pumped solid-state lasers based on praseodymium-doped LiYF_4. Applied Optics, 2010, 49, 3864.	2.1	46
93	Efficient continuous wave deep ultraviolet Pr3+:LiYF4 laser at 261.3 nm. Applied Physics Letters, 2011, 99, .	3.3	46
94	Wide wavelength tunability and green laser operation of diode-pumped Pr^3+:KY_3F_10. Optics Express, 2013, 21, 31274.	3.4	46
95	Spectroscopic properties of Er3+:YAG at 300–550ÂK and their effects on the 1.6ÂÎ⅓m laser transitions. Applied Physics B: Lasers and Optics, 2008, 91, 249-256.	2.2	45
96	Passively mode locked femtosecond Tm:Sc_2O_3 laser at 21Âμm. Optics Letters, 2012, 37, 437.	3.3	45
97	Efficient laser operation of Pr^3+, Mg^2+:SrAl_12O_19. Optics Letters, 2012, 37, 4889.	3.3	45
98	Spectroscopic characterization of V4+ -doped Al2O3 and YAlO3. Journal of Luminescence, 1993, 55, 55-62.	3.1	44
99	Er3+:YLiF4continuous wave cascade laser operation at 1620 and 2810 nm at room temperature. Applied Physics Letters, 1993, 62, 541-543.	3.3	44
100	Fluorescence dynamics, excited-state absorption, and stimulated emission of Er^3+ in KY(WO_4)_2. Journal of the Optical Society of America B: Optical Physics, 1998, 15, 1205.	2.1	44
101	Time-resolved spectra of excited-state absorption in Er3+ doped YAlO3. Applied Physics A: Solids and Surfaces, 1992, 54, 404-410.	1.4	42
102	In-band pumping of Nd-vanadate thin-disk lasers. Applied Physics B: Lasers and Optics, 2008, 91, 415-419.	2.2	41
103	Laser activity at 118, 107, and 097??m in the low-phonon-energy hosts KPb_2Br_5 and RbPb_2Br_5 doped with Nd^3+. Optics Letters, 2005, 30, 729.	3.3	40
104	Crystalline Pr:SrAl_12O_19 waveguide laser in the visible spectral region. Optics Letters, 2011, 36, 4620.	3.3	40
105	First ceramic laser in the visible spectral range. Optical Materials Express, 2011, 1, 1511.	3.0	40
106	Diode pumped Nd:GSAG and Nd:YGG laser at 942 and 935nm. Optics Communications, 2007, 275, 170-172.	2.1	39
107	Diode pumped high power operation of a femtosecond laser inscribed Yb:YAG waveguide laser [Invited]. Optical Materials Express, 2011, 1, 428.	3.0	39
108	Self-referenceable frequency comb from an ultrafast thin disk laser. Optics Express, 2012, 20, 9650.	3.4	39

#	Article	IF	Citations
109	Up-conversion processes in laser crystals. Journal of Luminescence, 1997, 72-74, 1-3.	3.1	38
110	Passively Q-switched Pr:YLF laser with a Co^2+:MgAl_2O_4 saturable absorber. Optics Letters, 2017, 42, 4687.	3.3	38
111	Spectroscopy, excited-state absorption and stimulated emission in Pr3+-doped Gd2SiO5 and Y2SiO5 crystals. Journal of Luminescence, 1997, 71, 27-35.	3.1	37
112	Passive Q switching of a diode-pumped 946-nm Nd:YAG laser with 16-W average output power. Applied Optics, 1998, 37, 7076.	2.1	37
113	Efficient upconversion-pumped continuous wave Er3+:LiLuF4 lasers. Optical Materials, 2015, 42, 167-173.	3.6	37
114	Spectroscopy and laser operation of Sm^3+-doped lithium lutetium tetrafluoride (LiLuF_4) and strontium hexaaluminate (SrAl_12O_19). Optics Express, 2015, 23, 21118.	3.4	37
115	Multipass pumped Nd-based thin-disk lasers: continuous-wave laser operation at 106 and 09 \hat{l} /4m with intracavity frequency doubling. Applied Optics, 2007, 46, 8256.	2.1	36
116	Continuous wave and mode-locked Yb^3+:Y_2O_3 ceramic thin disk laser. Optics Express, 2012, 20, 10847.	3.4	36
117	High resolution spectroscopy of Cr 4+ doped Y 3 Al 5 O 12. Journal of Luminescence, 1994, 60-61, 192-196.	3.1	35
118	Amplification in epitaxially grown Er:(Gd,Lu)_2O_3 waveguides for active integrated optical devices. Journal of the Optical Society of America B: Optical Physics, 2008, 25, 1850.	2.1	35
119	Photoconductivity in Yb-doped oxides at high excitation densities. Applied Physics B: Lasers and Optics, 2011, 102, 765-768.	2.2	35
120	Intracavity frequency-doubled diode-pumped Nd : LaSc 3 (BO 3) 4 lasers. Applied Physics B: Lasers and Optics, 1997, 64, 301-305.	2.2	34
121	Lu2S3:Ce3+, A new red luminescing scintillator. Nuclear Instruments & Methods in Physics Research B, 1998, 134, 304-309.	1.4	34
122	Spectroscopy of Ni2+-doped garnets and perovskites for solid state lasers. Journal of Luminescence, 1991, 48-49, 564-568.	3.1	33
123	Tm3+: GdVO4— a new efficient medium for diode-pumped 2—Î⅓m lasers. Quantum Electronics, 1997, 27, 13-14.	1.0	33
124	Excited state absorption and stimulated emission of Nd 3+ in crystals III: LaSc 3 (BO 3) 4, CaWO 4, and YLiF 4. Applied Physics B: Lasers and Optics, 1999, 68, 67-72.	2.2	33
125	In-band fiber-laser-pumped Er:YVO_4 laser emitting around 16 μm. Optics Letters, 2011, 36, 1188.	3.3	33
126	Holmium-doped Lu_2O_3, Y_2O_3, and Sc_2O_3 for lasers above 21 î¼m. Optics Express, 2013, 21, 3926.	3.4	33

#	Article	IF	CITATIONS
127	Efficient laser operation of diode-pumped Pr3+,Mg2+:SrAl12O19. Applied Physics B: Lasers and Optics, 2014, 116, 109-113.	2.2	33
128	Spectroscopic properties and lasing of Nd:Gd0.5La0.5VO4 crystals. Optics Communications, 1996, 124, 63-68.	2.1	31
129	Lasing characteristics of a diode-pumped Nd3+: CaGdAlO4crystal. Quantum Electronics, 1997, 27, 15-17.	1.0	31
130	Excited state absorption and stimulated emission of Nd $3+$ in crystals. Part I: Y 3 Al 5 O 12 , YAlO 3 , and Y 2 O 3 . Applied Physics B: Lasers and Optics, 1998 , 67 , $151-156$.	2.2	31
131	Type-I non-critically phase-matched second-harmonic generation in Gd 1-x Y x Ca 4 O(BO 3) 3. Applied Physics B: Lasers and Optics, 1999, 68, $1143-1146$.	2.2	31
132	Diode-pumped continuous-wave green upconversion lasing of Er^3+:LiLuF_4 using multipass pumping. Optics Letters, 2002, 27, 1699.	3.3	30
133	Semiconductor laser pumping of continuous-wave Pr3+[hyphen (true graphic)]doped ZBLAN fibre laser. Electronics Letters, 2005, 41, 794.	1.0	29
134	30 Hz operation of 2μ-Ho and Tm-lasers. Optics Communications, 1990, 80, 47-51.	2.1	28
135	Emission of octahedrally coordinated Mn3+ in garnets. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1998, 54, 1741-1749.	3.9	28
136	Spectroscopic properties of Cr-doped Sc2O3. Journal of Luminescence, 2000, 87-89, 1122-1125.	3.1	28
137	Ultrashort pulse generation from diode pumped mode-locked Yb^3+:sesquioxide single crystal lasers. Optics Express, 2011, 19, 2904.	3.4	28
138	Efficient visible laser operation of Pr,Mg:SrAl_12O_19 channel waveguides. Optics Letters, 2013, 38, 2698.	3.3	28
139	Spectroscopy of upper energy levels in an Er^3+-doped amorphous oxide. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 663.	2.1	28
140	Continuous-wave Pr^3+:BaY_2F_8 and Pr^3+:LiYF_4 lasers in the cyan-blue spectral region. Optics Letters, 2014, 39, 5158.	3.3	28
141	Spectroscopic characterization and laser performance of Pr,Mg:CaAl_12O_19. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 349.	2.1	28
142	Mode locking of roomâ€ŧemperature cw thulium and holmium lasers. Applied Physics Letters, 1992, 60, 1161-1162.	3.3	26
143	Excited state properties of ferrate (VI) doped crystals of K2SO4 and K2CrO4. Journal of Luminescence, 1995, 65, 293-301.	3.1	26
144	Q-switched operation of a femtosecond-laser-inscribed Yb:YAG channel waveguide laser using carbon nanotubes. Optics Express, 2015, 23, 7999.	3.4	26

#	Article	IF	CITATIONS
145	Optical spectroscopy of Cr3+ in ScF3 and Sc2O3. Journal of Luminescence, 1988, 39, 259-268.	3.1	25
146	Excited-state absorption and stimulated emission measurements in Cr4+:forsterite. Journal of Luminescence, 1997, 75, 319-325.	3.1	25
147	Spectroscopic characterisation of the upconversion avalanche mechanism in Pr3+,Yb3+:BaY2F8. Optical Materials, 2003, 24, 537-545.	3.6	25
148	Continuous wave Praseodymium solid-state lasers. , 2007, , .		25
149	Laser-written waveguides in KTP for broadband Type II second harmonic generation. Optics Express, 2012, 20, 22308.	3.4	25
150	A 180 mW Nd:LaSc3(BO3)4 single-frequency TEM00 microchip laser pumped by an injection-locked diode-laser array. Applied Physics B: Lasers and Optics, 1994, 58, 381-388.	2.2	24
151	Optical Measurement of Narrow Band Rare-Earth4fLevels with Energies Greater than the Band Gap of the Host. Physical Review Letters, 1998, 80, 1537-1540.	7.8	24
152	Switching of emissivity and photoconductivity in highly doped Yb3+:Y2O3 and Lu2O3 ceramics. Applied Physics Letters, 2007, 90, 201901.	3.3	24
153	Excited state absorption, energy levels, and thermal conductivity of Er3+:YAB. Applied Physics B: Lasers and Optics, 2008, 92, 567-571.	2.2	24
154	Laser oscillation in Yb:YAG waveguide beam-splitters with variable splitting ratio. Optics Letters, 2015, 40, 1753.	3.3	24
155	Spectroscopic properties of Cr4+-doped LiAlO2. Applied Physics B: Lasers and Optics, 1995, 61, 33-36.	2.2	23
156	Continuous-wave laser action of Yb3+-doped lanthanum scandium borate. Applied Physics B: Lasers and Optics, 2005, 80, 159-163.	2.2	23
157	Pulsed laser action of Pr:GdLiF4 at room temperature. Applied Physics B, Photophysics and Laser Chemistry, 1993, 57, 239-241.	1.5	22
158	Ultrashort pulse Yb:LaSc_3(BO_3)_4 mode-locked oscillator. Optics Express, 2007, 15, 15539.	3.4	22
159	Continuous-wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration. Applied Physics B: Lasers and Optics, 2007, 87, 217-220.	2.2	22
160	Low threshold monocrystalline Nd:(Gd, Lu)_2O_3 channel waveguide laser. Optics Express, 2009, 17, 4412.	3.4	22
161	Luminescence and time-resolved excited state absorption measurements in Pr3+ -doped La2Be2O5 and KGd (WO4)2 crystals. Optical Materials, 1996, 5, 111-118.	3.6	21
162	Tunable single frequency thulium: YAG microchip laser with external feedback. Applied Optics, 1998, 37, 3268.	2.1	21

#	Article	IF	CITATIONS
163	540 mW of blue output power at 425 nm generated by intracavity frequency doubling an upconversion-pumped Er3+:YLiF4 laser. Applied Physics Letters, 1998, 73, 139-141.	3.3	21
164	Polarized and time-resolved measurements of excited-state absorption and stimulated emission in Ti:YAlO3 and Ti:Al2O3. Applied Physics A: Solids and Surfaces, 1993, 57, 309-313.	1.4	20
165	Excited state absorption and laser potential of Mn5+-doped Li3PO4. Chemical Physics Letters, 1997, 265, 264-270.	2.6	20
166	Soliton mode-locked Nd:YAlO_3 laser at 930 nm. Journal of the Optical Society of America B: Optical Physics, 1998, 15, 1663.	2.1	20
167	Efficient green generation by intracavity frequency doubling of an optically pumped semiconductor disk laser. Applied Physics B: Lasers and Optics, 2007, 87, 95-99.	2.2	19
168	Compact diode pumped cw solid-state lasers in the visible spectral region. Optical Materials, 1999, 11, 205-216.	3.6	18
169	Avalanche up-conversion processes in Pr, Yb-doped materials. Journal of Alloys and Compounds, 2000, 300-301, 65-70.	5.5	18
170	Europium-doped sesquioxide thin films grown on sapphire by PLD. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 105, 30-33.	3.5	18
171	Pulsed laser deposition of Eu:Y2O3 thin films on (0001) α-Al2O3. Applied Physics A: Materials Science and Processing, 2005, 80, 209-216.	2.3	18
172	cw laser action of Er3+in double sensitized fluoroaluminate glass at room temperature. Applied Physics Letters, 1988, 52, 255-256.	3.3	17
173	Optical pump-probe processes in Nd^3+-doped KPb2Br5, RbPb2Br5, and KPb2Cl5. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 2610.	2.1	17
174	Thin-disk laser operation of Pr^3+,Mg^2+:SrAl_120_19. Optics Letters, 2014, 39, 1322.	3.3	17
175	Highly efficient continuous wave blue second-harmonic generation in fs-laser written periodically poled Rb:KTiOPO_4 waveguides. Optics Letters, 2014, 39, 1274.	3.3	17
176	Prospects of Holmium-doped fluorides as gain media for visible solid state lasers. Optical Materials Express, 2015, 5, 88.	3.0	17
177	Nd:GSAG-pulsed laser operation at 943Ânm and crystal growth. Applied Physics B: Lasers and Optics, 2007, 89, 305-310.	2.2	16
178	Correction of reabsorption artifacts in fluorescence spectra by the pinhole method. Optics Letters, 2010, 35, 1524.	3.3	16
179	Efficient intracavity frequency doubling of a passively mode-locked diode-pumped neodymium lanthanum scandium borate laser. Optics Letters, 1996, 21, 1567.	3.3	15
180	Pump modulation frequency resolved excited state absorption spectra in Tm3+ doped YLF. Applied Physics B: Lasers and Optics, 2003, 77, 817-822.	2.2	15

#	Article	IF	CITATIONS
181	Nd3+ doped Sc2O3 waveguiding film produced by pulsed laser deposition. Optical Materials, 2006, 28, 883-887.	3.6	15
182	Power scaling potential of Yb:NGW in thin disk laser configuration. Applied Physics B: Lasers and Optics, 2008, 91, 25-28.	2.2	15
183	On the problem ofM2analysis using Shack-Hartmann measurements. Journal Physics D: Applied Physics, 2001, 34, 2414-2419.	2.8	14
184	Energy transfer and inversion saturation in Tm, Ho: YAG. Journal of Luminescence, 1988, 40-41, 509-510.	3.1	13
185	<title>Passive Q-switching and mode locking of 2-um lasers</title> ., 1993, 1864, 186.		13
186	Visible double-clad upconversion fibre laser. Electronics Letters, 1998, 34, 565.	1.0	13
187	Characterization of crystalline europium doped α-Y2O3 PLD-films grown on α-Al2O3. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 105, 25-29.	3.5	13
188	Continuous-wave and mode-locked lasers based on cubic sesquioxide crystalline hosts., 2006,,.		13
189	Rare-earth-doped GVO films grown by pulsed laser deposition. Optical Materials, 2006, 28, 681-684.	3.6	13
190	Efficient laser operation of Nd ³⁺ :Lu ₂ O ₃ at various wavelengths between 917 nm and 1463 nm. Laser Physics, 2016, 26, 084003.	1.2	13
191	Dy ³⁺ :Lu ₂ O ₃ as a novel crystalline oxide for mid-infrared laser applications. Optical Materials Express, 2018, 8, 3447.	3.0	13
192	Two-dimensional growth of lattice matched Nd-doped (Gd,Lu)2O3 films on Y2O3 by pulsed laser deposition. Applied Physics Letters, 2008, 93, 053108.	3.3	12
193	Spectroscopy and laser operation of Nd-doped mixed sesquioxides (Lu1â^'x Sc x)2O3. Applied Physics B: Lasers and Optics, 2012, 108, 475-478.	2.2	12
194	Infrared excited state absorption of Ni 2+ doped crystals. Journal of Luminescence, 1994, 60-61, 197-200.	3.1	11
195	Stimulated emission and excited-state absorption at room temperature on the 550 nm-laser transition in Er 3+ doped YAIO 3. Journal of Luminescence, 1994, 60-61, 842-845.	3.1	11
196	Excited state absorption measurements and laser potential of Cr 4+ doped Ca 2 GeO 4. Applied Physics B: Lasers and Optics, 1997, 64, 647-650.	2.2	11
197	Excited state dynamics in sensitized photon avalanche processes. Journal of Luminescence, 1998, 76-77, 441-446.	3.1	11
198	Efficient room temperature continuous-wave operation of an Yb3+:Sc2O3crystal laser at 1041.6 and 1094.6 nm. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, R19-R21.	1.8	11

#	Article	IF	Citations
199	High-intracavity-power thin-disk laser for the alignment of molecules. Optics Express, 2015, 23, 28491.	3.4	11
200	Lasing of Nd ³⁺ in sapphire. Laser and Photonics Reviews, 2016, 10, 510-516.	8.7	11
201	Experimental determination of radiative-transition rates and quantum efficiencies in Er3+: YAlO3. Optics Communications, 1995, 118, 250-254.	2.1	10
202	Nondestructive measurement of the propagation losses in active planar waveguides. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 1571.	2.1	10
203	Spectroscopy and excited-state absorption of Ti4+:Li4Ge5O12 and Ti4+:Y2SiO5. Journal of Luminescence, 1997, 72-74, 208-210.	3.1	9
204	Excited state absorption and its influence on the laser behavior of Cr4+-doped garnets. Journal of Luminescence, 1997, 72-74, 222-223.	3.1	9
205	Room-temperature external cavity GaSb-based diode laser around $2.13\hat{l}\frac{1}{4}$ m. Applied Physics Letters, 2004, 85, 5825-5826.	3.3	9
206	Spectral narrowing of Yb:YAG waveguide lasers through hybrid integration with ultrafast laser written Bragg gratings. Optics Express, 2015, 23, 20195.	3.4	9
207	Efficient OPSL-pumped mode-locked Yb:Lu2O3 laser with 67% optical-to-optical efficiency. Scientific Reports, 2016, 6, 19090.	3.3	9
208	Nd:sapphire channel waveguide laser. Optical Materials Express, 2017, 7, 2361.	3.0	9
209	Excited-state absorption and laser potential of Mn^6+-doped BaSO_4 crystals. Journal of the Optical Society of America B: Optical Physics, 1997, 14, 2373.	2.1	8
210	Crystal growth, spectroscopic and laser characterization of Nd: CSB crystals. Journal of Luminescence, 1997, 72-74, 826-828.	3.1	8
211	LiYF4 liquid-phase epitaxy using an inverted slider geometry. Journal of Crystal Growth, 1999, 198-199, 564-567.	1.5	8
212	Energy transfer in crystalline Er3+,Yb3+:Sc2O3. Optical Materials, 2009, 31, 1636-1639.	3.6	8
213	Stabilization of intracavity frequency-doubled lasers with type I phase matching. Optics Letters, 2003, 28, 2100.	3.3	7
214	High-temperature growth and spectroscopic characterization of Er,Yb:YAl3(BO3)4 epitaxial thin layers. Optical Materials, 2010, 32, 1377-1379.	3.6	7
215	Lasers and Coherent Light Sources. , 2012, , 641-1046.		7
216	Lidar Research Network Water Vapor and Wind. Meteorologische Zeitschrift, 2003, 12, 5-24.	1.0	6

#	Article	IF	Citations
217	Epitaxial growth by pulsed laser deposition of Er-doped Sc2O3 films on sesquioxides monitored <i>in situ</i> by reflection high energy electron diffraction. Applied Physics Letters, 2007, 91, .	3.3	6
218	Experimental study of the output dynamics of intracavity frequency doubled optically pumped semiconductor disk lasers. Applied Physics Letters, 2008, 92, 101107.	3.3	6
219	Novel rare earth solid state lasers with emission wavelengths in the visible spectral range. , 2013, , .		6
220	Growth and diode-pumped laser operation of Pr^3+: \hat{l}^2 -(Y_05,Gd_05)F_3 at various transitions. Optics Letters, 2015, 40, 2699.	3.3	6
221	First-principles analysis for the optical absorption spectra of metal ions in solids. International Journal of Quantum Chemistry, 2004, 99, 488-494.	2.0	5
222	Crystalline growth of cubic (Eu, Nd):Y2O3 thin films on \hat{l}_{\pm} -Al2O3 by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2005, 80, 627-630.	2.3	5
223	Quenching processes in Yb lasers: correlation to the valence stability of the Yb ion. Proceedings of SPIE, 2009, , .	0.8	4
224	Epitaxial layer-by-layer growth of Yb:YAG and YbAG PLD-films. Applied Physics A: Materials Science and Processing, 2008, 93, 387-391.	2.3	3
225	Degradation of Laser Performance in Yb-Doped Oxide Thin-Disk Lasers at High Inversion Densities. , 2009, , .		3
226	PLD-grown Yb-doped Sesquioxide Films on Sapphire and Quartz Substrates. Journal of Physics: Conference Series, 2007, 59, 462-465.	0.4	2
227	Advances in Solid-State Laser Materials. ECS Transactions, 2009, 25, 287-290.	0.5	2
228	Photoconductivity Measurements Indicating a Nonlinear Loss Mechanism in Highly Yb-doped Oxides. , 2008, , .		2
229	Mixed garnet laser crystals for water vapour DIAL transmitter. , 2017, , .		2
230	Excited state absorption of Fe3+in garnet crystal. Radiation Effects and Defects in Solids, 1995, 136, 19-22.	1.2	1
231	Excited-state absorption and stimulated emission in Cr4+-doped oxide crystals. , 1997, , .		1
232	Up-conversion to the Conduction Band in highly doped Yb:YAG and Yb:Y <inf>2</inf> O <inf>3</inf> and its effect on Thin-Disk Lasers. , 2007, , .		1
233	Photoconductivity in Yb-doped materials at high excitation densities and its effect on highly Yb-doped thin-disk lasers. , 2009, , .		1
234	Method for the determination of dopant concentrations of luminescent ions. Optics Letters, 2011, 36, 4500.	3.3	1

#	Article	IF	CITATIONS
235	Temperature development in Yb:YAG thin-disk lasers at high inversion densities confirming nonlinear losses. , 2013, , .		1
236	Efficient visible laser emission of GaN laser diode pumped pr-doped fluoride crystals., 2008,,.		1
237	Excitation upconversion by sensitized photon avalanche. , 1998, , .		0
238	Measurement of the Wigner distribution of a helium neon laser with a spherical aberration and a tapered semiconductor laser using moving slit technology., 2003, 4932, 560.		0
239	<title>Diode pumped neodymium-based thin disk lasers</title> ., 2007, , .		O
240	Efficient high power passively mode-locked Yb:Lu <inf>2</inf> O <inf>3</inf> thin disk laser., 2008,,.		0
241	Solid-state lasers: status and perspectives. Applied Physics B: Lasers and Optics, 2009, 97, 249-249.	2.2	O
242	Solid-state lasers: Advances and prospects. , 2011, , .		0
243	Yb-doped ultrafast thin disk lasers. , 2011, , .		O
244	$Femto second\ laser\ written\ Pr: SrAl\< inf\> 12\< /inf\> O\< inf\> 19\< /inf\>\ channel-waveguide\ laser\ in\ the\ visible\ spectral\ range.\ ,\ 2011,\ ,\ .$		0
245	SESAMs for high-power femtosecond modelocking: power scaling of an Yb:LuScO3 thin disk laser to 23 W and 235 fs. Proceedings of SPIE, 2012, , .	0.8	0
246	Femtosecond pulse generation with Tm-doped sesquioxides. , 2013, , .		0
247	Towards high average output power and short pulse duration of SESAM modelocked thin disk lasers. , 2013, , .		O
248	Highly efficient fs-laser inscribed Yb:YAG waveguide lasers fabricated with a novel writing scheme. , 2013, , .		0
249	Ultrafast thin disk lasers: sub-100 fs pulse duration and carrier envelope offset detection. EPJ Web of Conferences, 2013, 41, 10009.	0.3	O
250	Nonlinear losses in photoconductive Yb:YAG laser materials: identification of photocarrier properties by non-steady-state photoEMF. Applied Physics B: Lasers and Optics, 2014, 117, 731-735.	2.2	0
251	High intracavity power thin-disk lasers for continuous-wave strong alignment of molecules. , 2015, , .		0
252	Ti:YAlO 3 vibronic transition: can lase or cannot?. , 1997, , .		O