
Venkateswarlu Kanamarlapudi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6577381/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ADP-ribosylation factor 6 expression increase in oesophageal adenocarcinoma suggests a potential biomarker role for it. PLoS ONE, 2022, 17, e0263845.	1.1	3
2	A Review of Current Trends with Type 2 Diabetes Epidemiology, Aetiology, Pathogenesis, Treatments and Future Perspectives. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2021, Volume 14, 3567-3602.	1.1	146
3	Hemodilution Increases the Susceptibility of Red Blood Cells to Mechanical Shear Stress During In Vitro Hemolysis Testing. ASAIO Journal, 2021, 67, 632-641.	0.9	8
4	Recent advances in understanding the role of glucagon-like peptide 1. F1000Research, 2020, 9, 239.	0.8	33
5	Mutation p.R356Q in the Collybistin Phosphoinositide Binding Site Is Associated With Mild Intellectual Disability. Frontiers in Molecular Neuroscience, 2019, 12, 60.	1.4	10
6	Mechanism of cardiovascular disease benefit of glucagon-like peptide 1 agonists. Cardiovascular Endocrinology, 2018, 7, 18-23.	0.8	7
7	STAT6. , 2018, , 5175-5182.		1
8	Arl8b. , 2018, , 430-436.		0
9	GLP-1., 2018,, 1-9.		0
10	ADAP1., 2018,, 156-164.		0
11	GLP-1R., 2018,, 2106-2117.		0
12	ARAP3., 2018,, 399-406.		0
13	ADAP2., 2018,, 164-169.		0
14	Interleukin-13 Receptor Subunit Alpha-2 (IL-13Rα2). , 2018, , 2695-2701.		1
15	ADAMTS13. , 2018, , 141-146.		Ο
16	SMAP1., 2018,, 5054-5059.		0
17	CLP-1., 2018,, 2098-2106.		0
18	PSD3., 2018, , 4258-4263.		0

#	Article	IF	CITATIONS
19	AGAP1., 2018,, 239-244.		0
20	GLP-1R., 2018, , 1-12.		0
21	von Willebrand Factor. , 2018, , 5950-5954.		1
22	ADP-Ribosylation Factor-6 (ARF6). , 2018, , 230-238.		0
23	Molecular characterisation of small molecule agonists and internalisation of GLPâ€1R. FASEB Journal, 2018, 32, 670.57.	0.2	0
24	Shear Stressâ€Induced Total Blood Trauma in Multiple Species. Artificial Organs, 2017, 41, 934-947.	1.0	55
25	EFA6 regulates selective polarised transport and axon regeneration from the axon initial segment. Journal of Cell Science, 2017, 130, 3663-3675.	1.2	34
26	The Bacterial Species Campylobacter jejuni Induce Diverse Innate Immune Responses in Human and Avian Intestinal Epithelial Cells. Frontiers in Microbiology, 2017, 8, 1840.	1.5	17
27	PSD3. , 2017, , 1-5.		1
28	Interleukin-13 Receptor Subunit Alpha-2 (IL-13Rα2). , 2017, , 1-7.		1
29	ADAMTS13. , 2017, , 1-6.		Ο
30	von Willebrand Factor. , 2017, , 1-6.		0
31	Luteinizing hormone/chorionic gonadotrophin receptor overexpressed in granulosa cells from polycystic ovary syndrome ovaries is functionally active. Reproductive BioMedicine Online, 2016, 32, 635-641.	1.1	32
32	Signal transducer and activator of transcription-3 licenses Toll-like receptor 4-dependent interleukin (IL)-6 and IL-8 production via IL-6 receptor-positive feedback in endometrial cells. Mucosal Immunology, 2016, 9, 1125-1136.	2.7	51
33	Molecular Characterisation of Small Molecule Agonists Effect on the Human Glucagon Like Peptide-1 Receptor Internalisation. PLoS ONE, 2016, 11, e0154229.	1.1	17
34	ADP-Ribosylation Factor-6 (ARF6). , 2016, , 1-9.		1
35	ADAP2. , 2016, , 1-6.		0

3

#	Article	IF	CITATIONS
37	GLP-1., 2016,, 1-9.		0
38	GLP-1R., 2016, , 1-12.		0
39	Arl8b. , 2016, , 1-8.		0
40	AGAP1., 2016,, 1-6.		0
41	SMAP1., 2016, , 1-6.		0
42	STAT6., 2016, , 1-7.		0
43	The regions within the N-terminus critical for human glucagon like peptide-1 receptor (hGLP-1R) cell Surface expression. Scientific Reports, 2015, 4, 7410.	1.6	20
44	Growth factors mediated differentiation of mesenchymal stem cells to cardiac polymicrotissue using hanging drop and bioreactor. Cell Biology International, 2015, 39, 502-507.	1.4	4
45	Distinct regions in the C-Terminus required for GLP-1R cell surface expression, activity and internalisation. Molecular and Cellular Endocrinology, 2015, 413, 66-77.	1.6	18
46	Exclusion of Integrins from CNS Axons Is Regulated by Arf6 Activation and the AIS. Journal of Neuroscience, 2015, 35, 8359-8375.	1.7	50
47	Agonist-induced internalisation of the glucagon-like peptide-1 receptor is mediated by the Cαq pathway. Biochemical Pharmacology, 2015, 93, 72-84.	2.0	57
48	Exchange Factor EFA6R Requires C-terminal Targeting to the Plasma Membrane to Promote Cytoskeletal Rearrangement through the Activation of ADP-ribosylation Factor 6 (ARF6). Journal of Biological Chemistry, 2014, 289, 33378-33390.	1.6	23
49	ADP-ribosylation factor 6 regulates endothelin-1-induced lipolysis in adipocytes. Biochemical Pharmacology, 2014, 90, 406-413.	2.0	27
50	The temporal expression of estrogen receptor alpha-36 and runx2 in human bone marrow derived stromal cells during osteogenesis. Biochemical and Biophysical Research Communications, 2014, 453, 552-556.	1.0	4
51	Cytohesin 2/ARF6 regulates preadipocyte migration through the activation of ERK1/2. Biochemical Pharmacology, 2014, 92, 651-660.	2.0	31
52	The Effect of Shear Stress on the Size, Structure, and Function of Human von Willebrand Factor. Artificial Organs, 2014, 38, 741-750.	1.0	45
53	Lactoferrin inhibits dexamethasone-induced chondrocyte impairment from osteoarthritic cartilage through up-regulation of extracellular signal-regulated kinase 1/2 and suppression of FASL, FAS, and Caspase 3. Biochemical and Biophysical Research Communications, 2013, 441, 249-255.	1.0	25
54	ARF6 Directs Axon Transport and Traffic of Integrins and Regulates Axon Growth in Adult DRG Neurons. Journal of Neuroscience, 2012, 32, 10352-10364.	1.7	91

#	Article	IF	CITATIONS
55	ARF6 Activated by the LHCG Receptor through the Cytohesin Family of Guanine Nucleotide Exchange Factors Mediates the Receptor Internalization and Signaling. Journal of Biological Chemistry, 2012, 287, 20443-20455.	1.6	37
56	ARF6-Dependent Regulation of P2Y Receptor Traffic and Function in Human Platelets. PLoS ONE, 2012, 7, e43532.	1.1	26
57	ADP-Ribosylation Factor 6 Expression and Activation Are Reduced in Myometrium in Complicated Pregnancies. PLoS ONE, 2012, 7, e37954.	1.1	14
58	ADAP1., 2012, , 48-54.		0
59	ARAP3., 2012,, 142-146.		0
60	Arl8b. , 2012, , 164-169.		0
61	A balanced chromosomal translocation disrupting <i>ARHGEF9</i> is associated with epilepsy, anxiety, aggression, and mental retardation. Human Mutation, 2009, 30, 61-68.	1.1	131
62	Single-Channel Characterization of the Rabbit Recombinant RyR2 Reveals a Novel Inactivation Property of Physiological Concentrations of ATP. Journal of Membrane Biology, 2008, 222, 65-77.	1.0	11
63	PI-3-kinase-dependent membrane recruitment of centaurin-α2 is essential for its effect on ARF6-mediated actin cytoskeleton reorganisation. Journal of Cell Science, 2007, 120, 792-801.	1.2	31
64	The calcium-sensing receptor changes cell shape via a β-arrestin-1–ARNO–ARF6–ELMO protein network. Journal of Cell Science, 2007, 120, 2489-2497.	1.2	41
65	Alternative splicing generates a smaller assortment of CaV2.1 transcripts in cerebellar Purkinje cells than in the cerebellum. Physiological Genomics, 2006, 24, 86-96.	1.0	26
66	Centaurin-α1 and KIF13B kinesin motor protein interaction in ARF6 signalling. Biochemical Society Transactions, 2005, 33, 1279.	1.6	20
67	Centaurin-α1, an ADP-Ribosylation Factor 6 GTPase Activating Protein, Inhibits β2-Adrenoceptor Internalization. Molecular Pharmacology, 2005, 67, 1822-1828.	1.0	30
68	Analysis of the Interaction Between Cytohesin 2 and IPCEF1. Methods in Enzymology, 2005, 404, 252-266.	0.4	7
69	Centaurin-α1 interacts directly with kinesin motor protein KIF13B. Journal of Cell Science, 2005, 118, 2471-2484.	1.2	62
70	A novel 4.1 ezrin radixin moesin (FERM)-containing protein, â€~Willin'. FEBS Letters, 2005, 579, 5089-5094.	1.3	38
71	Centaurin-α1 Is an in Vivo Phosphatidylinositol 3,4,5-Trisphosphate-dependent GTPase-activating Protein for ARF6 That Is Involved in Actin Cytoskeleton Organization. Journal of Biological Chemistry, 2004, 279, 6205-6208.	1.6	57
72	Interaction Protein for Cytohesin Exchange Factors 1 (IPCEF1) Binds Cytohesin 2 and Modifies Its Activity. Journal of Biological Chemistry, 2003, 278, 43460-43469.	1.6	54

VENKATESWARLU

#	Article	IF	CITATIONS
73	Functional coupling of rat metabotropic glutamate 1a receptors to phospholipase D in CHO cells: involvement of extracellular Ca2+, protein kinase C, tyrosine kinase and Rho-A. Neuropharmacology, 2002, 42, 1-8.	2.0	20
74	Human Sterol 14α-Demethylase Activity Is Enhanced by the Membrane-Bound State of Cytochrome b5. Archives of Biochemistry and Biophysics, 2001, 395, 78-84.	1.4	19
75	Activities and Kinetic Mechanisms of Native and Soluble NADPH–Cytochrome P450 Reductase. Biochemical and Biophysical Research Communications, 2001, 286, 48-54.	1.0	41
76	Phosphatidylinositol 3-kinase–dependent translocation of phospholipase Cγ2 in mouse megakaryocytes is independent of Bruton tyrosine kinase translocation. Blood, 2001, 97, 678-684.	0.6	43
77	Casein Kinase I Associates with Members of the Centaurin-α Family of Phosphatidylinositol 3,4,5-Trisphosphate-binding Proteins. Journal of Biological Chemistry, 2001, 276, 18757-18764.	1.6	47
78	Signalling via ADP-ribosylation factor 6 lies downstream of phosphatidylinositide 3-kinase. Biochemical Journal, 2000, 345, 719.	1.7	21
79	Signalling via ADP-ribosylation factor 6 lies downstream of phosphatidylinositide 3-kinase. Biochemical Journal, 2000, 345, 719-724.	1.7	53
80	ldentification of the Ras GTPase-activating protein GAP1m as a phosphatidylinositol-3,4,5-trisphosphate-binding protein in vivo. Current Biology, 1999, 9, 265-269.	1.8	77
81	Generation of a Complete, Soluble, and Catalytically Active Sterol 14α-Demethylaseâ^Reductase Complex. Biochemistry, 1999, 38, 8733-8738.	1.2	54
82	Molecular Cloning and Functional Characterization of a Human Homologue of Centaurin-α. Biochemical and Biophysical Research Communications, 1999, 262, 237-244.	1.0	38
83	Identification of centaurin-α1 as a potential in vivo phosphatidylinositol 3,4,5-trisphosphate-binding protein that is functionally homologous to the yeast ADP-ribosylation factor (ARF) GTPase-activating protein, Gcs1. Biochemical Journal, 1999, 340, 359-363.	1.7	66
84	Confocal imaging of the subcellular distribution of phosphatidylinositol 3,4,5-trisphosphate in insulin- and PDGF-stimulated 3T3-L1 adipocytes. Biochemical Journal, 1999, 344, 511-518.	1.7	98
85	Potential regulation of ADP-ribosylation factor 6 signalling by phosphatidylinositol 3,4,5-trisphosphate. Biochemical Society Transactions, 1999, 27, 683-689.	1.6	26
86	Identification of the Ras GTPase-activating protein GAP1m as an in vivo phosphatidylinositol 3,4,5-trisphosphate-binding protein. Biochemical Society Transactions, 1999, 27, A104-A104.	1.6	0
87	Identification of centaurin-α1 as a potential in vivo phosphatidylinositol 3,4,5-trisphosphate-binding protein that is functionally homologous to the yeast ADP-ribosylation factor (ARF) GTPase-activating protein, Gcs1. Biochemical Journal, 1999, 340, 359.	1.7	24
88	Confocal imaging of the subcellular distribution of phosphatidylinositol 3,4,5-trisphosphate in insulin- and PDGF-stimulated 3T3-L1 adipocytes. Biochemical Journal, 1999, 344, 511.	1.7	46
89	Insulin-dependent translocation of ARNO to the plasma membrane of adipocytes requires phosphatidylinositol 3-kinase. Current Biology, 1998, 8, 463-466.	1.8	262
90	The N-Terminal Membrane Domain of Yeast NADPH-Cytochrome P450 (CYP) Oxidoreductase Is Not Required for Catalytic Activity in Sterol Biosynthesis or in Reconstitution of CYP Activity. Journal of Biological Chemistry, 1998, 273, 4492-4496.	1.6	57

VENKATESWARLU

#	Article	IF	CITATIONS
91	Nerve growth factor- and epidermal growth factor-stimulated translocation of the ADP-ribosylation factor-exchange factor GRP1 to the plasma membrane of PC12 cells requires activation of phosphatidylinositol 3-kinase and the GRP1 pleckstrin homology domain. Biochemical Journal, 1998, 335, 139-146.	1.7	137
92	NADPH Cytochrome P-450 Oxidoreductase and Susceptibility to Ketoconazole. Antimicrobial Agents and Chemotherapy, 1998, 42, 1756-1761.	1.4	18
93	Stereoselective interaction of SCH 39304, a triazole, with sterol 14alpha-demethylase of Aspergillus fumigatus. Journal of Antimicrobial Chemotherapy, 1997, 39, 597-601.	1.3	1
94	Inhibition and interaction of cytochrome P450 of <i>Candida krusei</i> with azole antifungal drugs. Medical Mycology, 1997, 35, 19-25.	0.3	26
95	In-vitro activity of D0870, a new triazole antifungal drug, in comparison with fluconazole and itraconazole against Aspergillus fumigatus and Candida krusei. Journal of Antimicrobial Chemotherapy, 1997, 39, 731-736.	1.3	6
96	GAP1IP4BP; a protein linking inositol 1,3,4,5-tetrakisphosphate with Ras and Ca2+ homeostasis. Biochemical Society Transactions, 1997, 25, 507S-507S.	1.6	0
97	Itraconazole resistance in Aspergillus fumigatus. Antimicrobial Agents and Chemotherapy, 1997, 41, 1364-1368.	1.4	457
98	Fluconazole tolerance in clinical isolates of Cryptococcus neoformans. Antimicrobial Agents and Chemotherapy, 1997, 41, 748-751.	1.4	72
99	Characterization of Saccharomyces cerevisiae CYP51 and a CYP51 fusion protein with NADPH cytochrome P-450 oxidoreductase expressed in Escherichia coli. Antimicrobial Agents and Chemotherapy, 1997, 41, 776-780.	1.4	17
100	Distinct subcellular localisations of the putative inositol 1,3,4,5-tetrakisphosphate receptors GAP1 IP4BP and GAP1 m result from the GAP1 IP4BP PH domain directing plasma membrane targeting. Current Biology, 1997, 7, 1007-1010.	1.8	90
101	Comparison of D0870, a new triazole antifungal agent, to fluconazole for inhibition of Candida albicans cytochrome P-450 by using in vitro assays. Antimicrobial Agents and Chemotherapy, 1996, 40, 1382-1386.	1.4	30
102	Reduced accumulation of drug in Candida krusei accounts for itraconazole resistance. Antimicrobial Agents and Chemotherapy, 1996, 40, 2443-2446.	1.4	60
103	Evidence for cytochrome P-450 and P-450-mediated benzo(a) pyrene hydroxylation in the white rot fungusPhanerochaete chrysosporium. FEMS Microbiology Letters, 1996, 135, 51-55.	0.7	80
104	Microsomal and cytosolic cytochrome P450 mediated benzo(a)pyrene hydroxylation in Pleurotus pulmonarius. Biotechnology Letters, 1995, 17, 969-974.	1.1	39
105	Resistance to fluconazole inCandida albicansfrom AIDS patients correlated with reduced intracellular accumulation of drug. FEMS Microbiology Letters, 1995, 131, 337-341.	0.7	74
106	Ammonium represses NADPH-nitrate reductase in the moss Funaria hygrometrica. Plant Science, 1991, 75, 185-194.	1.7	15
107	ADAP2. The AFCS-nature Molecule Pages, 0, , .	0.2	11
108	Arap3. The AFCS-nature Molecule Pages, 0, , .	0.2	11

VENKATESWARLU

#	Article	IF	CITATIONS
109	ADP-ribosylation factor domain protein 1. The AFCS-nature Molecule Pages, 0, , .	0.2	11
110	Arf-like protein 8B. The AFCS-nature Molecule Pages, 0, , .	0.2	11
111	Adap1. The AFCS-nature Molecule Pages, 0, , .	0.2	0
112	Arf-like protein 8A. The AFCS-nature Molecule Pages, 0, , .	0.2	2