Lena Studt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6576947/publications.pdf Version: 2024-02-01

LENA STUDT

#	Article	IF	CITATIONS
1	Secondary Metabolite Gene Regulation in Mycotoxigenic Fusarium Species: A Focus on Chromatin. Toxins, 2022, 14, 96.	1.5	12
2	Biosynthesis of Fusapyrone Depends on the H3K9 Methyltransferase, FmKmt1, in Fusarium mangiferae. Frontiers in Fungal Biology, 2021, 2, .	0.9	13
3	Cyclic, Hydrophobic Hexapeptide Fusahexin Is the Product of a Nonribosomal Peptide Synthetase in <i>Fusarium graminearum</i> . Journal of Natural Products, 2021, 84, 2070-2080.	1.5	8
4	The H4K20 methyltransferase Kmt5 is involved in secondary metabolism and stress response in phytopathogenic Fusarium species. Fungal Genetics and Biology, 2021, 155, 103602.	0.9	13
5	A novel fungal gene regulation system based on inducible VPR-dCas9 and nucleosome map-guided sgRNA positioning. Applied Microbiology and Biotechnology, 2020, 104, 9801-9822.	1.7	12
6	Effect of H2A.Z deletion is rescued by compensatory mutations in Fusarium graminearum. PLoS Genetics, 2020, 16, e1009125.	1.5	10
7	Evidence of a Demethylase-Independent Role for the H3K4-Specific Histone Demethylases in Aspergillus nidulans and Fusarium graminearum Secondary Metabolism. Frontiers in Microbiology, 2019, 10, 1759.	1.5	23
8	Fusaoctaxin A, an Example of a Two-Step Mechanism for Non-Ribosomal Peptide Assembly and Maturation in Fungi. Toxins, 2019, 11, 277.	1.5	17
9	The putative H3K36 demethylase BcKDM1 affects virulence, stress responses and photomorphogenesis in Botrytis cinerea. Fungal Genetics and Biology, 2019, 123, 14-24.	0.9	23
10	Regulation of a novel Fusarium cytokinin in Fusarium pseudograminearum. Fungal Biology, 2019, 123, 255-266.	1,1	9
11	Set1 and Kdm5 are antagonists for H3K4 methylation and regulators of the major conidiationâ€specific transcription factor gene <i>ABA1</i> in <i>Fusarium fujikuroi</i> . Environmental Microbiology, 2018, 20, 3343-3362.	1.8	38
12	High-throughput format for the phenotyping of fungi on solid substrates. Scientific Reports, 2017, 7, 4289.	1.6	22
13	Comparative transcriptome and proteome analysis reveals a global impact of the nitrogen regulators AreA and AreB on secondary metabolism in Fusarium fujikuroi. PLoS ONE, 2017, 12, e0176194.	1.1	35
14	Mechanistic Characterisation of Two Sesquiterpene Cyclases from the Plant Pathogenic Fungus <i>Fusarium fujikuroi</i> . Angewandte Chemie - International Edition, 2016, 55, 8748-8751.	7.2	63
15	Mechanistische Charakterisierung von zwei Sesquiterpen yclasen aus dem phytopathogenen Pilz <i>Fusarium fujikuroi</i> . Angewandte Chemie, 2016, 128, 8890-8893.	1.6	19
16	Knockâ€down of the methyltransferase Kmt6 relieves H3K27me3 and results in induction of cryptic and otherwise silent secondary metabolite gene clusters in <i>Fusarium fujikuroi</i> . Environmental Microbiology, 2016, 18, 4037-4054.	1.8	109
17	Sound of silence: the beauvericin cluster in <i>Fusarium fujikuroi</i> is controlled by clusterâ€specific and global regulators mediated by H3K27 modification. Environmental Microbiology, 2016, 18, 4282-4302.	1.8	45
18	Two separate key enzymes and two pathwayâ€specific transcription factors are involved in fusaric acid biosynthesis in <scp><i>F</i></scp> <i>usarium fujikuroi</i> . Environmental Microbiology, 2016, 18, 936-956.	1.8	64

Lena Studt

#	Article	IF	CITATIONS
19	Lack of the COMPASS Component Ccl1 Reduces H3K4 Trimethylation Levels and Affects Transcription of Secondary Metabolite Genes in Two Plant–Pathogenic Fusarium Species. Frontiers in Microbiology, 2016, 07, 2144.	1.5	42
20	Genetic engineering, high resolution mass spectrometry and nuclear magnetic resonance spectroscopy elucidate the bikaverin biosynthetic pathway in Fusarium fujikuroi. Fungal Genetics and Biology, 2015, 84, 26-36.	0.9	27
21	The global regulator <scp>FfSge</scp> 1 is required for expression of secondary metabolite gene clusters but not for pathogenicity in <scp><i>F</i></scp> <i>usarium fujikuroi</i> . Environmental Microbiology, 2015, 17, 2690-2708.	1.8	26
22	Gibberellins and the Red Pigments Bikaverin and Fusarubin. Fungal Biology, 2014, , 209-238.	0.3	9
23	Genetic Manipulation of the Fusarium fujikuroi Fusarin Gene Cluster Yields Insight into the Complex Regulation and Fusarin Biosynthetic Pathway. Chemistry and Biology, 2013, 20, 1055-1066.	6.2	107
24	Signaling Governed by G Proteins and cAMP Is Crucial for Growth, Secondary Metabolism and Sexual Development in Fusarium fujikuroi. PLoS ONE, 2013, 8, e58185.	1.1	52
25	Deciphering the Cryptic Genome: Genome-wide Analyses of the Rice Pathogen Fusarium fujikuroi Reveal Complex Regulation of Secondary Metabolism and Novel Metabolites. PLoS Pathogens, 2013, 9, e1003475.	2.1	406
26	Two Histone Deacetylases, FfHda1 and FfHda2, Are Important for Fusarium fujikuroi Secondary Metabolism and Virulence. Applied and Environmental Microbiology, 2013, 79, 7719-7734.	1.4	112
27	A Functional Bikaverin Biosynthesis Gene Cluster in Rare Strains of Botrytis cinerea Is Positively Controlled by VELVET. PLoS ONE, 2013, 8, e53729.	1.1	69
28	Biosynthesis of Fusarubins Accounts for Pigmentation of Fusarium fujikuroi Perithecia. Applied and Environmental Microbiology, 2012, 78, 4468-4480.	1.4	169
29	Bioassay-guided fractionation of a thymol-deprived hydrophilic thyme extract and its antispasmodic effect. Journal of Ethnopharmacology, 2012, 141, 848-853.	2.0	32
30	Segregation of secondary metabolite biosynthesis in hybrids of Fusarium fujikuroi and Fusarium proliferatum. Fungal Genetics and Biology, 2012, 49, 567-577.	0.9	14
31	The Sfp-Type 4′-Phosphopantetheinyl Transferase Ppt1 of Fusarium fujikuroi Controls Development, Secondary Metabolism and Pathogenicity. PLoS ONE, 2012, 7, e37519.	1.1	59