## Sergei Glavatskih

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6576834/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Wear in wind turbine pitch bearings—A comparative design study. Wind Energy, 2022, 25, 700-718.                                                                                                            | 1.9 | 6         |
| 2  | Greases for electric vehicle motors: thickener effect and energy saving potential. Tribology<br>International, 2022, 167, 107400.                                                                          | 3.0 | 11        |
| 3  | Transition anionic complex in trihexyl(tetradecyl)phosphonium-bis(oxalato)borate ionic liquid –<br>revisited. Physical Chemistry Chemical Physics, 2021, 23, 6190-6203.                                    | 1.3 | 17        |
| 4  | Micro- to Nano- and from Surface to Bulk: Influence of Halogen-Free Ionic Liquid Architecture and<br>Dissociation on Green Oil Lubricity. ACS Sustainable Chemistry and Engineering, 2021, 9, 13606-13617. | 3.2 | 12        |
| 5  | Boundary lubricity of phosphonium bisoxalatoborate ionic liquids. Tribology International, 2021, 161, 107075.                                                                                              | 3.0 | 11        |
| 6  | On the critical amplitude in oscillating rolling element bearings. Tribology International, 2021, 163, 107154.                                                                                             | 3.0 | 9         |
| 7  | The effect of anion architecture on the lubrication chemistry of phosphonium orthoborate ionic liquids. Scientific Reports, 2021, 11, 24021.                                                               | 1.6 | 13        |
| 8  | Tribological Performance of Non-halogenated Phosphonium Ionic Liquids as Additives to<br>Polypropylene and Lithium-Complex Greases. Tribology Letters, 2020, 68, 1.                                        | 1.2 | 16        |
| 9  | Electroresponsive structuring and friction of a non-halogenated ionic liquid in a polar solvent: effect of concentration. Physical Chemistry Chemical Physics, 2020, 22, 19162-19171.                      | 1.3 | 16        |
| 10 | Diffusion of Ions in Phosphonium Orthoborate Ionic Liquids Studied by 1H and 11B Pulsed Field<br>Gradient NMR. Frontiers in Chemistry, 2020, 8, 119.                                                       | 1.8 | 4         |
| 11 | Interfacial structuring of non-halogenated imidazolium ionic liquids at charged surfaces: effect of<br>alkyl chain length. Physical Chemistry Chemical Physics, 2020, 22, 8450-8460.                       | 1.3 | 41        |
| 12 | Effect of water on the electroresponsive structuring and friction in dilute and concentrated ionic liquid lubricant mixtures. Physical Chemistry Chemical Physics, 2020, 22, 28191-28201.                  | 1.3 | 8         |
| 13 | Electro-Responsive Surface Composition and Kinetics of an Ionic Liquid in a Polar Oil. Langmuir, 2019, 35, 15692-15700.                                                                                    | 1.6 | 25        |
| 14 | Non-halogenated Ionic Liquid Dramatically Enhances Tribological Performance of Biodegradable Oils.<br>Frontiers in Chemistry, 2019, 7, 98.                                                                 | 1.8 | 21        |
| 15 | Electro-responsivity of ionic liquid boundary layers in a polar solvent revealed by neutron reflectance. Journal of Chemical Physics, 2018, 148, 193806.                                                   | 1.2 | 33        |
| 16 | Rheology of phosphonium ionic liquids: a molecular dynamics and experimental study. Physical<br>Chemistry Chemical Physics, 2018, 20, 10193-10203.                                                         | 1.3 | 19        |
| 17 | Tribology of polypropylene and Li-complex greases with ZDDP and MoDTC additives. Tribology International, 2018, 118, 189-195.                                                                              | 3.0 | 41        |
| 18 | Anomalous Interfacial Structuring of a Non-Halogenated Ionic Liquid: Effect of Substrate and<br>Temperature. Colloids and Interfaces, 2018, 2, 60.                                                         | 0.9 | 11        |

SERGEI GLAVATSKIH

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Structure and dynamics elucidation of ionic liquids using multidimensional Laplace NMR. Chemical Communications, 2017, 53, 11056-11059.                                                                     | 2.2 | 19        |
| 20 | Acceleration of diffusion in ethylammonium nitrate ionic liquid confined between parallel glass plates. Physical Chemistry Chemical Physics, 2017, 19, 25853-25858.                                         | 1.3 | 28        |
| 21 | Atomistic Insight into Tetraalkylphosphonium Bis(oxalato)borate Ionic Liquid/Water Mixtures. 2.<br>Volumetric and Dynamic Properties. Journal of Physical Chemistry B, 2016, 120, 7446-7455.                | 1.2 | 27        |
| 22 | Solvation structures of water in trihexyltetradecylphosphonium-orthoborate ionic liquids. Journal of Chemical Physics, 2016, 145, .                                                                         | 1.2 | 25        |
| 23 | Self-diffusion of phosphonium Bis(Salicylato)Borate ionic liquid in pores of Vycor porous glass.<br>Microporous and Mesoporous Materials, 2016, 230, 128-134.                                               | 2.2 | 23        |
| 24 | Influence of electric potential on the apparent viscosity of an ionic liquid: facts and artifacts.<br>Physical Chemistry Chemical Physics, 2016, 18, 26609-26615.                                           | 1.3 | 2         |
| 25 | Dynamic characteristics of compliant journal bearings considering thermal effects. Tribology<br>International, 2016, 94, 288-305.                                                                           | 3.0 | 24        |
| 26 | Selfâ€diffusion and interactions in mixtures of imidazolium bis(mandelato)borate ionic liquids with<br>polyethylene glycol: <sup>1</sup> H NMR study. Magnetic Resonance in Chemistry, 2015, 53, 493-497.   | 1.1 | 16        |
| 27 | Atomistic Insight into Tetraalkylphosphonium-Bis(oxalato)borate Ionic Liquid/Water Mixtures. I. Local<br>Microscopic Structure. Journal of Physical Chemistry B, 2015, 119, 5251-5264.                      | 1.2 | 38        |
| 28 | Weighing the surface charge of an ionic liquid. Nanoscale, 2015, 7, 16039-16045.                                                                                                                            | 2.8 | 28        |
| 29 | Nonlinear dynamic behaviour of vertical and horizontal rotors in compliant liner tilting pad journal bearings: Some design considerations. Tribology International, 2015, 82, 142-152.                      | 3.0 | 42        |
| 30 | The effect of the cation alkyl chain length on density and diffusion in dialkylpyrrolidinium<br>bis(mandelato)borate ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 26798-26805.             | 1.3 | 27        |
| 31 | Steady state and dynamic characteristics for guide bearings of a hydro-electric unit. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2014, 228, 836-848. | 1.0 | 3         |
| 32 | Effect of shaft roughness and pressure on friction of polymer bearings in water. Proceedings of the<br>Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2014, 228, 371-381.   | 1.0 | 17        |
| 33 | Extending performance limits of turbine oils. Tribology International, 2014, 69, 52-60.                                                                                                                     | 3.0 | 5         |
| 34 | Halogen-free pyrrolidinium bis(mandelato)borate ionic liquids: some physicochemical properties and<br>lubrication performance as additives to polyethylene glycol. RSC Advances, 2014, 4, 30617-30623.      | 1.7 | 59        |
| 35 | Atomistic Insight into Orthoborate-Based Ionic Liquids: Force Field Development and Evaluation.<br>Journal of Physical Chemistry B, 2014, 118, 8711-8723.                                                   | 1.2 | 57        |
| 36 | Dynamic characteristics of polymer faced tilting pad journal bearings. Tribology International, 2014, 74, 20-27.                                                                                            | 3.0 | 12        |

Sergei Glavatskih

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A comparative linear and nonlinear dynamic analysis of compliant cylindrical journal bearings.<br>Mechanism and Machine Theory, 2013, 64, 80-92.                                                                               | 2.7 | 39        |
| 38 | Boron in Tribology: From Borates to Ionic Liquids. Tribology Letters, 2013, 51, 281-301.                                                                                                                                       | 1.2 | 152       |
| 39 | NMR self-diffusion study of a phosphonium bis(mandelato)borate ionic liquid. Physical Chemistry<br>Chemical Physics, 2013, 15, 9281.                                                                                           | 1.3 | 25        |
| 40 | Influence of pad compliance on nonlinear dynamic characteristics of tilting pad journal bearings.<br>Tribology International, 2013, 57, 46-53.                                                                                 | 3.0 | 24        |
| 41 | Halogen-free chelated orthoborate ionic liquids and organic ionic plastic crystals. Journal of<br>Materials Chemistry, 2012, 22, 6928.                                                                                         | 6.7 | 38        |
| 42 | Journal Vibration: Influence of Compliant Bearing Design. , 2012, , .                                                                                                                                                          |     | 0         |
| 43 | Novel Alkylborate–Dithiocarbamate Lubricant Additives: Synthesis and Tribophysical<br>Characterization. Tribology Letters, 2012, 45, 67-78.                                                                                    | 1.2 | 30        |
| 44 | Novel halogen-free chelated orthoborate–phosphonium ionic liquids: synthesis and tribophysical properties. Physical Chemistry Chemical Physics, 2011, 13, 12865.                                                               | 1.3 | 147       |
| 45 | Interfacial Antiwear and Physicochemical Properties of Alkylborate-dithiophosphates. ACS Applied<br>Materials & Interfaces, 2011, 3, 956-968.                                                                                  | 4.0 | 48        |
| 46 | THD analysis of compliant journal bearings considering liner deformation. Tribology International,<br>2011, 44, 1629-1641.                                                                                                     | 3.0 | 36        |
| 47 | SPECIAL ISSUE ON NORDTRIB: THE NORDIC SYMPOSIUM ON TRIBOLOGY 2010. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2011, 225, 563-564.                                       | 1.0 | 0         |
| 48 | 3D thermohydrodynamic analysis of a textured slider. Tribology International, 2009, 42, 1487-1495.                                                                                                                             | 3.0 | 29        |
| 49 | Synthesis, Physicochemical, and Tribological Characterization of<br><i>S</i> -Di- <i>n</i> -octoxyboron- <i>O</i> , <i>O</i> ,〲-di- <i>n</i> -octyldithiophosphate. ACS Applied<br>Materials & Interfaces, 2009, 1, 2835-2842. | 4.0 | 39        |
| 50 | Tribotronics—Towards active tribology. Tribology International, 2008, 41, 934-939.                                                                                                                                             | 3.0 | 54        |
| 51 | Pressure Buildup Mechanism in a Textured Inlet of a Hydrodynamic Contact. Journal of Tribology, 2008, 130, .                                                                                                                   | 1.0 | 62        |
| 52 | Rough surface flow factors in full film lubrication based on a homogenization technique. Tribology<br>International, 2007, 40, 1025-1034.                                                                                      | 3.0 | 35        |
| 53 | A cavitation algorithm for arbitrary lubricant compressibility. Tribology International, 2007, 40, 1294-1300.                                                                                                                  | 3.0 | 55        |
| 54 | Steady State Performance Characteristics of a Tilting Pad Thrust Bearing. Journal of Tribology, 2001, 123, 608-615.                                                                                                            | 1.0 | 23        |