Evan L Preisser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6576618/publications.pdf

Version: 2024-02-01

89 papers

5,467 citations

147801 31 h-index 72 g-index

89 all docs 89 docs citations

89 times ranked 5470 citing authors

#	Article	IF	CITATIONS
1	Property value effects of the Hemlock wooly adelgid infestation in New England, U.S.A Ecological Economics, 2022, 194, 107354.	5.7	О
2	Impact of chronic stylet-feeder infestation on folivore-induced signaling and defenses in a conifer. Tree Physiology, 2021, 41, 416-427.	3.1	2
3	Lethal and Sublethal Effects of Flupyradifurone on Bemisia tabaci MED (Hemiptera: Aleyrodidae) Feeding Behavior and TYLCV Transmission in Tomato. Journal of Economic Entomology, 2021, 114, 1072-1080.	1.8	4
4	Sulfoxaflor Alters <i>Bemisia tabaci</i> MED (Hemiptera: Aleyrodidae) Preference, Feeding, and TYLCV Transmission. Journal of Economic Entomology, 2021, 114, 1568-1574.	1.8	1
5	Auditory predator cues affect monarch (Danaus plexippus; Lepidoptera: Nymphalidae) development time and pupal weight. Acta Oecologica, 2021, 111, 103740.	1.1	9
6	Facilitation between invasive herbivores: hemlock woolly adelgid increases gypsy moth preference for and performance on eastern hemlock. Ecological Entomology, 2020, 45, 416-422.	2,2	9
7	Impact of Hemlock Woolly Adelgid (Hemiptera: Adelgidae) Infestation on the Jasmonic Acid-Elicited Defenses of Tsuga canadensis (Pinales: Pinaceae). Environmental Entomology, 2020, 49, 1226-1231.	1.4	1
8	A Four-Year, Seven-State Reforestation Trial with Eastern Hemlocks (Tsuga canadensis) Resistant to Hemlock Woolly Adelgid (Adelges tsugae). Forests, 2020, 11, 312.	2.1	6
9	Tomato Yellow Leaf Curl Virus Infection Alters Bemisia tabaci MED (Hemiptera: Aleyrodidae) Vulnerability to Flupyradifurone. Journal of Economic Entomology, 2020, 113, 1922-1926.	1.8	2
10	Seasonal changes in eastern hemlock (<i>Tsuga canadensis</i>) foliar chemistry. Canadian Journal of Forest Research, 2020, 50, 557-564.	1.7	0
11	Proportional fitness loss and the timing of defensive investment: a cohesive framework across animals and plants. Oecologia, 2020, 193, 273-283.	2.0	11
12	Reduced <i>Compsilura concinnata</i> parasitism of New England saturniid larvae. Agricultural and Forest Entomology, 2019, 21, 346-349.	1.3	2
13	Conifer responses to a styletâ€feeding invasive herbivore and induction with methyl jasmonate: impact on the expression of induced defences and a native folivore. Agricultural and Forest Entomology, 2019, 21, 227-234.	1.3	10
14	Asymmetric biotic interactions and abiotic niche differences revealed by a dynamic joint species distribution model. Ecology, 2018, 99, 1018-1023.	3.2	13
15	Two invasive herbivores on a shared host: patterns and consequences of phytohormone induction. Oecologia, 2018, 186, 973-982.	2.0	19
16	Joint species distribution modelling for spatioâ€ŧemporal occurrence and ordinal abundance data. Global Ecology and Biogeography, 2018, 27, 142-155.	5.8	33
17	Predator Cues Increase Silkmoth Mortality. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	5
18	The Past, Present, and Future of the Hemlock Woolly Adelgid (Adelges tsugae) and Its Ecological Interactions with Eastern Hemlock (Tsuga canadensis) Forests. Insects, 2018, 9, 172.	2.2	33

#	Article	IF	Citations
19	Impact of hemlock woolly adelgid (Adelges tsugae) infestation on xylem structure and function and leaf physiology in eastern hemlock (Tsuga canadensis). Functional Plant Biology, 2018, 45, 501.	2.1	9
20	Chronic impacts of invasive herbivores on a foundational forest species: a wholeâ€tree perspective. Ecology, 2018, 99, 1783-1791.	3.2	15
21	Social buffering in a eusocial invertebrate: termite soldiers reduce the lethal impact of competitor cues on workers. Ecology, 2017, 98, 952-960.	3.2	18
22	Individual and nonâ€additive effects of exotic sapâ€feeders on root functional and mycorrhizal traits of a shared conifer host. Functional Ecology, 2017, 31, 2024-2033.	3.6	4
23	Plant defence negates pathogen manipulation of vector behaviour. Functional Ecology, 2017, 31, 1574-1581.	3.6	10
24	Pretty Picky for a Generalist: Impacts of Toxicity and Nutritional Quality on Mantid Prey Processing. Environmental Entomology, 2017, 46, 626-632.	1.4	4
25	Impact of Consuming †Toxic' Monarch Caterpillars on Adult Chinese Mantid Mass Gain and Fecundity. Insects, 2017, 8, 23.	2.2	9
26	Seasonal variation in effects of herbivory on foliar nitrogen of a threatened conifer. AoB PLANTS, 2017, 9, plx007.	2.3	2
27	Impact of an Invasive Insect and Plant Defense on a Native Forest Defoliator. Insects, 2016, 7, 45.	2.2	9
28	Dropping Behavior in the Pea Aphid (Hemiptera: Aphididae): How Does Environmental Context Affect Antipredator Responses?. Journal of Insect Science, 2016, 16, 89.	1.5	18
29	A comparison of plants and animals in their responses to risk of consumption. Current Opinion in Plant Biology, 2016, 32, 1-8.	7.1	22
30	Contrasting effects of two exotic invasive hemipterans on wholeâ€plant resource allocation in a declining conifer. Entomologia Experimentalis Et Applicata, 2015, 157, 86-97.	1.4	10
31	Effects of Light and Water Availability on the Performance of Hemlock Woolly Adelgid (Hemiptera:) Tj ETQq $1\ 1\ 0$	0.784314 i 1.4	rgBT/Overloc
32	Manipulation of Host Quality and Defense by a Plant Virus Improves Performance of Whitefly Vectors. Journal of Economic Entomology, 2015, 108, 11-19.	1.8	63
33	Hemlock woolly adelgid alters fine root bacterial abundance and mycorrhizal associations in eastern hemlock. Forest Ecology and Management, 2015, 339, 112-116.	3.2	11
34	Error management in plant allocation to herbivore defense. Trends in Ecology and Evolution, 2015, 30, 441-445.	8.7	51
35	Insecticides promote viral outbreaks by altering herbivore competition. Ecological Applications, 2015, 25, 1585-1595.	3.8	64
36	Terpene Chemistry of Eastern Hemlocks Resistant to Hemlock Woolly Adelgid. Journal of Chemical Ecology, 2014, 40, 1003-1012.	1.8	24

#	Article	IF	CITATIONS
37	Competitor avoidance drives withinâ€host feeding site selection in a passively dispersed herbivore. Ecological Entomology, 2014, 39, 10-16.	2.2	10
38	Failure under stress: the effect of the exotic herbivore Adelges tsugae on biomechanics of Tsuga canadensis. Annals of Botany, 2014, 113, 721-730.	2.9	13
39	Tree responses to an invasive sap-feeding insect. Plant Ecology, 2014, 215, 297-304.	1.6	39
40	Modeling the spread of invasive species using dynamic network models. Biological Invasions, 2014, 16, 949-960.	2.4	39
41	Hemlock Woolly Adelgid and Elongate Hemlock Scale Induce Changes in Foliar and Twig Volatiles of Eastern Hemlock. Journal of Chemical Ecology, 2013, 39, 1090-1100.	1.8	23
42	Chinese mantids gut toxic monarch caterpillars: avoidance of prey defence?. Ecological Entomology, 2013, 38, 76-82.	2.2	28
43	Multiple Forms of Vector Manipulation by a Plant-Infecting Virus: Bemisia tabaci and Tomato Yellow Leaf Curl Virus. Journal of Virology, 2013, 87, 4929-4937.	3.4	149
44	The cost of safety: Refuges increase the impact of predation risk in aquatic systems. Ecology, 2013, 94, 573-579.	3.2	102
45	False Ring Formation in Eastern Hemlock Branches: Impacts of Hemlock Woolly Adelgid and Elongate Hemlock Scale. Environmental Entomology, 2012, 41, 523-531.	1.4	37
46	Vegetation and Invertebrate Community Response to Eastern Hemlock Decline in Southern New England. Northeastern Naturalist, 2012, 19, 541-558.	0.3	20
47	Asymmetric priority effects influence the success of invasive forest insects. Ecological Entomology, 2012, 37, 350-358.	2.2	21
48	The allometry of fear: interspecific relationships between body size and response to predation risk. Ecosphere, 2012, 3, 1-27.	2.2	58
49	Modeling range dynamics in heterogeneous landscapes: invasion of the hemlock woolly adelgid in eastern North America. Ecological Applications, 2012, 22, 472-486.	3.8	64
50	Exotic herbivores on a shared native host: tissue quality after individual, simultaneous, and sequential attack. Oecologia, 2012, 169, 1015-1024.	2.0	54
51	Eastern hemlock (Tsuga canadensis) regeneration in the presence of hemlock woolly adelgid (Adelges) Tj ETQq1 1 2433-2439.	0.784314 1.7	4 rgBT /Ove 27
52	Using Citizen Science Programs to Identify Host Resistance in Pest-Invaded Forests. Conservation Biology, 2011, 25, 182-188.	4.7	63
53	Simulating the dispersal of hemlock woolly adelgid in the temperate forest understory. Entomologia Experimentalis Et Applicata, 2011, 141, 216-223.	1.4	12
54	Variation in Plant Defense against Invasive Herbivores: Evidence for a Hypersensitive Response in Eastern Hemlocks (Tsuga canadensis). Journal of Chemical Ecology, 2011, 37, 592-597.	1.8	65

#	Article	IF	Citations
55	Predator-prey na \tilde{A} -vet \tilde{A} $\hat{\mathbb{Q}}$, antipredator behavior, and the ecology of predator invasions. Oikos, 2010, 119, 610-621.	2.7	561
56	Effects of Hemlock Woolly Adelgid and Elongate Hemlock Scale on Eastern Hemlock Growth and Foliar Chemistry. Environmental Entomology, 2010, 39, 513-519.	1.4	36
57	Ecological boundary detection using Bayesian areal wombling. Ecology, 2010, 91, 3448-3455.	3.2	36
58	Observer bias and the detection of lowâ€density populations. Ecological Applications, 2009, 19, 1673-1679.	3.8	182
59	Avian kleptoparasitism of the digger wasp Sphex pensylvanicus. Canadian Entomologist, 2009, 141, 604-608.	0.8	6
60	The physiology of predator stress in freeâ€ranging prey. Journal of Animal Ecology, 2009, 78, 1103-1105.	2.8	30
61	Resource dynamics influence the strength of nonâ€consumptive predator effects on prey. Ecology Letters, 2009, 12, 315-323.	6.4	69
62	Intraspecific Variation in <i>Tsuga canadensis</i> Foliar Chemistry. Northeastern Naturalist, 2009, 16, 585-594.	0.3	8
63	Holcus lanatus invasion slows decomposition through its interaction with a macroinvertebrate detritivore, Porcellio scaber. Biological Invasions, 2008, 10, 191-199.	2.4	17
64	Range expansion and population dynamics of co-occurring invasive herbivores. Biological Invasions, 2008, 10, 201-213.	2.4	54
65	Wood Decomposition Following a Perennial Lupine Die-Off: A 3-Year Litterbag Study. Ecosystems, 2008, 11, 442-453.	3.4	4
66	Evolution of increased cold tolerance during range expansion of the elongate hemlock scale <i>Fiorinia externa </i> Ferris (Hemiptera: Diaspididae). Ecological Entomology, 2008, 33, 709-715.	2.2	37
67	The Many Faces of Fear: Comparing the Pathways and Impacts of Nonconsumptive Predator Effects on Prey Populations. PLoS ONE, 2008, 3, e2465.	2.5	250
68	REVISITING THE CLASSICS: CONSIDERING NONCONSUMPTIVE EFFECTS IN TEXTBOOK EXAMPLES OF PREDATOR–PREY INTERACTIONS. Ecology, 2008, 89, 2416-2425.	3.2	401
69	Factors Influencing Larval Survival of the Invasive Browntail Moth (Lepidoptera: Lymantriidae) in Relict North American Populations. Environmental Entomology, 2008, 37, 1429-1437.	1.4	9
70	FROM INDIVIDUALS TO ECOSYSTEM FUNCTION: TOWARD AN INTEGRATION OF EVOLUTIONARY AND ECOSYSTEM ECOLOGY. Ecology, 2008, 89, 2436-2445.	3.2	158
71	EXPLOITATIVE COMPETITION BETWEEN INVASIVE HERBIVORES BENEFITS A NATIVE HOST PLANT. Ecology, 2008, 89, 2671-2677.	3.2	55
72	METAPOPULATION DYNAMICS OVERRIDE LOCAL LIMITS ON LONG-TERM PARASITE PERSISTENCE. Ecology, 2008, 89, 3290-3297.	3.2	19

#	Article	IF	CITATIONS
73	When Predators Don't Eat Their Prey: Nonconsumptive Predator Effects on Prey Dynamics1. Ecology, 2008, 89, 2414-2415.	3.2	31
74	Dynamics of a subterranean trophic cascade in space and time. Journal of Nematology, 2008, 40, 85-92.	0.9	17
75	Underground herbivory and the costs of constitutive defenseÂin tobacco. Acta Oecologica, 2007, 31, 210-215.	1.1	13
76	PREDATOR HUNTING MODE AND HABITAT DOMAIN ALTER NONCONSUMPTIVE EFFECTS IN PREDATOR–PREY INTERACTIONS. Ecology, 2007, 88, 2744-2751.	3.2	326
77	Factors affecting settlement rate of the hemlock woolly adelgid, Adelges tsugae, on eastern hemlock, Tsuga canadensis. Agricultural and Forest Entomology, 2007, 9, 215-219.	1.3	29
78	PLANT FACILITATION OF A BELOWGROUND PREDATOR. Ecology, 2006, 87, 1116-1123.	3.2	24
79	Long-Term Survival of the Entomopathogenic Nematode <i>Heterorhabditis marelatus</i> . Environmental Entomology, 2005, 34, 1501-1506.	1.4	17
80	RESOURCE COMPETITION MODIFIES THE STRENGTH OF TRAIT-MEDIATED PREDATOR–PREY INTERACTIONS: A META-ANALYSIS. Ecology, 2005, 86, 2771-2779.	3.2	105
81	Plant damage from and defenses against â€~cryptic' herbivory: A guild perspective. Journal of Plant Interactions, 2005, 1, 197-210.	2.1	6
82	Long-Term Survival of the Entomopathogenic NematodeHeterorhabditis marelatus. Environmental Entomology, 2005, 34, 1501-1506.	1.4	14
83	Phoresy of the entomopathogenic nematode Heterorhabditis marelatus by a non-host organism, the isopod Porcellio scaber. Journal of Invertebrate Pathology, 2005, 88, 173-176.	3.2	42
84	SCARED TO DEATH? THE EFFECTS OF INTIMIDATION AND CONSUMPTION IN PREDATOR–PREY INTERACTIONS. Ecology, 2005, 86, 501-509.	3.2	1,374
85	Widening the window of persistence in seasonal pathogen–host systems. Theoretical Population Biology, 2005, 68, 267-276.	1.1	3
86	Climate Affects Predator Control of an Herbivore Outbreak. American Naturalist, 2004, 163, 754-762.	2.1	89
87	Seasonally limited host supply generates microparasite population cycles. Bulletin of Mathematical Biology, 2004, 66, 583-594.	1.9	21
88	FIELD EVIDENCE FOR A RAPIDLY CASCADING UNDERGROUND FOOD WEB. Ecology, 2003, 84, 869-874.	3.2	46
89	Vernal Pool Conservation in Connecticut: An Assessment and Recommendations. Environmental Management, 2000, 26, 503-513.	2.7	39