
David Abasiwani Alagpulinsa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6576587/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances in understanding the molecular basis of clonal hematopoiesis. Trends in Molecular Medicine, 2022, 28, 360-377.	6.7	5
2	Metabolomic and transcriptomic analyses of the anti-rheumatoid arthritis potential of xylopic acid in a bioinspired lipoprotein nanoformulation. Biomaterials, 2021, 268, 120482.	11.4	18
3	Genomic Instability in Multiple Myeloma. Trends in Cancer, 2020, 6, 858-873.	7.4	18
4	Harnessing CXCL12 signaling to protect and preserve functional β-cell mass and for cell replacement in type 1 diabetes. , 2019, 193, 63-74.		18
5	Alginate-microencapsulation of human stem cell–derived β cells with CXCL12 prolongs their survival and function in immunocompetent mice without systemic immunosuppression. American Journal of Transplantation, 2019, 19, 1930-1940.	4.7	94
6	Amplification and overexpression of E2 ubiquitin conjugase UBE2T promotes homologous recombination in multiple myeloma. Blood Advances, 2019, 3, 3968-3972.	5.2	11
7	A Cyclin-Dependent Kinase Inhibitor, Dinaciclib, Impairs Homologous Recombination and Sensitizes Multiple Myeloma Cells to PARP Inhibition. Molecular Cancer Therapeutics, 2016, 15, 241-250.	4.1	58
8	Flap Structure-Specific Endonuclease 1 (FEN1) May be a Key Mediator of Genome Instability in Myeloma: A Cellular Vulnerability with Potential Therapeutic Significance. Blood, 2016, 128, 4440-4440.	1.4	0
9	A peptide nucleic acid targeting nuclear <i>RAD51</i> sensitizes multiple myeloma cells to melphalan treatment. Cancer Biology and Therapy, 2015, 16, 976-986.	3.4	14
10	Nuclease Activity Is Associated with Genomic Instability As Well As Survival in Myeloma; Underlying Mechanisms and Significance. Blood, 2015, 126, 2420-2420.	1.4	2
11	A Small-Molecule Inhibitor of RAD51 Reduces Homologous Recombination and Sensitizes Multiple Myeloma Cells to Doxorubicin. Frontiers in Oncology, 2014, 4, 289.	2.8	69
12	A Peptide Nucleic Acid Targeting Nuclear Rad51 Sensitizes Myeloma Cells to Melphalan Chemotoxicity Both in Vitro and in Vivo. Blood, 2014, 124, 3529-3529.	1.4	5
13	Abstract 2400: Dinaciclib, an inhibitor of cyclin-dependent kinases (CDKs), impairs homologous recombination, abrogates G2 checkpoint arrest and sensitizes myeloma cells to PARP inhibition. , 2014, , .		0
14	Dinaciclib, a CDK Inhibitor, Impairs Homologous Recombination and Sensitizes Multiple Myeloma Cells to PARP Inhibition. Blood, 2014, 124, 479-479.	1.4	5