GregÃ³rio Miguel Ferreira de Camargo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6576159/publications.pdf Version: 2024-02-01

102 01

GregÃ³rio Miguel Ferreira de

#	Article	IF	CITATIONS
1	Guzerat indicine cattle and A2 milk production. Animal Biotechnology, 2023, 34, 467-469.	1.5	6
2	Variability analyses of the maternal lineage of horses and donkeys. Gene, 2021, 769, 145231.	2.2	3
3	Principal components for morphometric traits in Campolina horses. Journal of Animal Breeding and Genetics, 2021, 138, 179-187.	2.0	5
4	Water buffaloes (Bubalus bubalis) only have A2A2 genotype for beta-casein. Tropical Animal Health and Production, 2021, 53, 145.	1.4	6
5	The effect of mitochondrial DNA polymorphisms on cattle reproduction. Molecular Biology Reports, 2021, 48, 1005-1008.	2.3	3
6	Influence of coat color on genetic parameter estimates in horses. Journal of Applied Genetics, 2021, 62, 297-306.	1.9	5
7	Effect of the X chromosome in genomic evaluations of reproductive traits in beef cattle. Animal Reproduction Science, 2021, 225, 106682.	1.5	3
8	Effects of plant extract supplementations or monensin on nutrient intake, digestibility, ruminal fermentation and metabolism in dairy cows. Animal Feed Science and Technology, 2021, 275, 114886.	2.2	15
9	Do non-bovine domestic animals produce A2 milk?: an in silico analysis. Animal Biotechnology, 2021, , 1-3.	1.5	6
10	Genome-wide association for plasma urea concentration in sheep. Livestock Science, 2021, 248, 104483.	1.6	4
11	Effect of genomic X-chromosome regions on Nelore bull fertility. Journal of Applied Genetics, 2021, 62, 655-659.	1.9	2
12	A deletion in the <i>MC1R</i> gene alters coat color in Guzerat cattle. Animal Genetics, 2021, 52, 896-897.	1.7	4
13	Genomeâ€wide association for plasma albumin concentration in sheep. Animal Genetics, 2021, 52, 898-900.	1.7	0
14	Identification of novel candidate genes for age at first calving in Nellore cows using a SNP chip specifically developed for Bos taurus indicus cattle. Theriogenology, 2021, 173, 156-162.	2.1	7
15	Genomic Regions Associated with the Position and Number of Hair Whorls in Horses. Animals, 2021, 11, 2925.	2.3	5
16	Polymorphisms in TLR4 Gene Associated With Somatic Cell Score in Water Buffaloes (Bubalus bubalis). Frontiers in Veterinary Science, 2020, 7, 568249.	2.2	9
17	Mapping genomic regions for reproductive traits in beef cattle: Inclusion of the X chromosome. Reproduction in Domestic Animals, 2020, 55, 1650-1654.	1.4	3
18	Associations between MUC1 gene polymorphism and resistance to mastitis, milk production and fertility traits in Murrah water buffaloes. Journal of Applied Animal Research, 2020, 48, 151-155.	1.2	6

#	Article	IF	CITATIONS
19	Linkage Disequilibrium-Based Inference of Genome Homology and Chromosomal Rearrangements Between Species. G3: Genes, Genomes, Genetics, 2020, 10, 2327-2343.	1.8	4
20	<i>MC1R</i> gene and coat color in buffaloes. Animal Genetics, 2020, 51, 345-346.	1.7	3
21	Genetic heterogeneity of white markings in Quarter Horses. Livestock Science, 2020, 232, 103935.	1.6	0
22	Genetic potential of Sindhi cattle for A2 milk production. Animal Production Science, 2020, 60, 893.	1.3	19
23	Inconsistencies in horse coat color registration: A case study. Journal of Equine Science, 2020, 31, 57-60.	0.8	2
24	The role of molecular genetics in livestock production. Animal Production Science, 2019, 59, 201.	1.3	8
25	Molecular characterization of virulence genes cctA, nanA, and fliC in Clostridium chauvoei from Rio Grande do Sul and São Paulo State, Brazil. Ciencia Rural, 2019, 49, .	0.5	Ο
26	Genotype x Environment Interaction for reproductive traits in brazilian Nellore breed cattle. Revista Brasileira De Saude E Producao Animal, 2019, 20, .	0.3	3
27	Twinning rate in buffaloes: A case report. Reproduction in Domestic Animals, 2019, 54, 808-811.	1.4	2
28	Influence of X-chromosome markers on reproductive traits of beef cattle. Livestock Science, 2019, 220, 152-157.	1.6	5
29	Quantitative trait loci for morphometric and mineral composition traits of the tibia bone in a broiler Ā— layer cross. Animal, 2019, 13, 1563-1569.	3.3	2
30	Amh Polymorphisms and their association with traits indicative of sexual precocity in nelore heifers. Semina:Ciencias Agrarias, 2019, 40, 1489.	0.3	3
31	Copy number variation regions in Nellore cattle: Evidences of environment adaptation. Livestock Science, 2018, 207, 51-58.	1.6	30
32	Use of single-step genome-wide association studies for prospecting genomic regions related to milk production and milk quality of buffalo. Journal of Dairy Research, 2018, 85, 402-406.	1.4	16
33	Genome-wide scan reveals population stratification and footprints of recent selection in Nelore cattle. Genetics Selection Evolution, 2018, 50, 22.	3.0	23
34	Genomic association for sexual precocity in beef heifers using pre-selection of genes and haplotype reconstruction. PLoS ONE, 2018, 13, e0190197.	2.5	20
35	Association between single nucleotide polymorphisms and sexual precocity in Nellore heifers. Animal Reproduction Science, 2017, 177, 88-96.	1.5	13
36	Prospecting polymorphisms in the PPP3CA and FABP4 genes and their association with early pregnancy probability in Nellore heifers. Livestock Science, 2017, 203, 76-81.	1.6	4

GregÃ³rio Miguel Ferreira di

#	Article	IF	CITATIONS
37	Genome-Wide Association Study for Carcass Traits in an Experimental Nelore Cattle Population. PLoS ONE, 2017, 12, e0169860.	2.5	71
38	Genome-wide association study provides strong evidence of genes affecting the reproductive performance of Nellore beef cows. PLoS ONE, 2017, 12, e0178551.	2.5	36
39	Genome-Wide Association Study for Indicator Traits of Sexual Precocity in Nellore Cattle. PLoS ONE, 2016, 11, e0159502.	2.5	82
40	Genetic association between SNPs in the DGAT1 gene and milk production traits in Murrah buffaloes. Tropical Animal Health and Production, 2016, 48, 1421-1426.	1.4	11
41	Genome-Wide Association Study of Meat Quality Traits in Nellore Cattle. PLoS ONE, 2016, 11, e0157845.	2.5	76
42	Prospecting major genes in dairy buffaloes. BMC Genomics, 2015, 16, 872.	2.8	97
43	Polymorphisms in the GHRL gene and their associations with traits of economic interest in beef cattle. Genetics and Molecular Research, 2015, 14, 18188-18197.	0.2	6
44	Low frequency of Y anomaly detected in Australian Brahman cow-herds. Meta Gene, 2015, 3, 59-61.	0.6	2
45	Polymorphisms in Oxytocin and α _{1a} Adrenergic Receptor Genes and Their Effects on Production Traits in Dairy Buffaloes. Animal Biotechnology, 2015, 26, 165-168.	1.5	8
46	Polymorphisms in TOX and NCOA2 genes and their associations with reproductive traits in cattle. Reproduction, Fertility and Development, 2015, 27, 523.	0.4	14
47	Association of ADIPOQ , OLR1 and PPARGC1A gene polymorphisms with growth and carcass traits in Nelore cattle. Meta Gene, 2015, 4, 1-7.	0.6	17
48	Short communication: Variable number of tandem repeat polymorphisms in DGAT1 gene of buffaloes (Bubalus bubalis) is associated with milk constituents. Journal of Dairy Science, 2015, 98, 3492-3495.	3.4	9
49	Non-synonymous mutations mapped to chromosome X associated with andrological and growth traits in beef cattle. BMC Genomics, 2015, 16, 384.	2.8	34
50	Genome-wide association study of reproductive traits in Nellore heifers using Bayesian inference. Genetics Selection Evolution, 2015, 47, 67.	3.0	32
51	Association between JY-1 gene polymorphisms and reproductive traits in beef cattle. Gene, 2014, 533, 477-480.	2.2	15
52	Polymorphisms in the MTRN1A gene and their effects on the productive and reproductive traits in buffaloes. Tropical Animal Health and Production, 2014, 46, 337-340.	1.4	17
53	Polymorphism analysis in genes of the somatotropic axis in Nellore cattle selected for growth. Gene, 2014, 545, 215-219.	2.2	9
54	Association between single-nucleotide polymorphisms and milk production traits in buffalo. Genetics and Molecular Research, 2014, 13, 10256-10268.	0.2	53

#	Article	IF	CITATIONS
55	Effects of a single nucleotide polymorphism in the leptin gene on the productive traits of dairy buffaloes (Bubalus bubalis). Molecular Biology Reports, 2013, 40, 5159-5163.	2.3	7
56	Multiple-trait random regression models for the estimation of genetic parameters for milk, fat, and protein yield in buffaloes. Journal of Dairy Science, 2013, 96, 5923-5932.	3.4	12
57	Polymorphisms in the ghrelin gene and their associations with milk yield and quality in water buffaloes. Journal of Dairy Science, 2013, 96, 3326-3331.	3.4	15
58	Characterization of the Exonic Regions of the <scp>JY</scp> â€l Gene in Zebu Cattle and Buffaloes. Reproduction in Domestic Animals, 2013, 48, 918-922.	1.4	7
59	Associations of FASN gene polymorphisms with economical traits in Nellore cattle (Bos primigenius) Tj ETQq1 1 C).784314 r 2.3	gBT /Overlo
60	First polymorphisms in JY-1 gene in cattle (Bos taurus indicus) and their association with sexual precocity and growth traits. Molecular Biology Reports, 2012, 39, 10105-10109.	2.3	10
61	Selection strategies for dairy buffaloes: economic and genetic consequences. Journal of Animal Breeding and Genetics, 2012, 129, 488-500.	2.0	5
62	Genetic parameters for milk, fat and protein yields in Murrah buffaloes (Bubalus bubalis Artiodactyla,) Tj ETQqO O	0 _{1.g} BT /O	verlock 10 T
63	Selection of alfalfa cultivars adapted for tropical environments with repeated measures using PROC MIXED of SAS [®] System. Plant Genetic Resources: Characterisation and Utilisation, 2010, 8, 55-62.	0.8	7
64	Use of PCR-RFLP (Polymerase Chain Reaction - Restricted Fragment Length Polymorphism) in the gene of the enzyme Stearoyl-CoA-Desaturase in Bubalus bubalis. Italian Journal of Animal Science, 2010, 6, .	1.9	0
	Partial genetic characterization of Stearoyl Coa-Desaturase's structural region in Ruhalus hubalis		

66 Morphometric measurements for sexual dimorphism in the Campolina horse breed. Pesquisa 0.9 1

65

Italian Journal of Animal Science, 2007, 6, 287-290.