Akira Ishii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/657613/publications.pdf

Version: 2024-02-01

38	857	14	28
papers	citations	h-index	g-index
38	38	38	962
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Neural mechanisms of mental fatigue. Reviews in the Neurosciences, 2014, 25, 469-79.	2.9	105
2	Effect of mental fatigue on the central nervous system: an electroencephalography study. Behavioral and Brain Functions, 2012, 8, 48.	3.3	96
3	The neural basis of academic achievement motivation. Neurolmage, 2008, 42, 369-378.	4.2	78
4	Neural effects of mental fatigue caused by continuous attention load: A magnetoencephalography study. Brain Research, 2014, 1561, 60-66.	2.2	72
5	Frontier studies on fatigue, autonomic nerve dysfunction, and sleep-rhythm disorder. Journal of Physiological Sciences, 2015, 65, 483-498.	2.1	70
6	Two types of mental fatigue affect spontaneous oscillatory brain activities in different ways. Behavioral and Brain Functions, 2013, 9, 2.	3.3	50
7	Two different types of mental fatigue produce different styles of task performance. Neurology Psychiatry and Brain Research, 2013, 19, 5-11.	2.0	37
8	Neural effect of mental fatigue on physical fatigue: A magnetoencephalography study. Brain Research, 2014, 1542, 49-55.	2.2	36
9	Neural effects of prolonged mental fatigue: A magnetoencephalography study. Brain Research, 2013, 1529, 105-112.	2.2	32
10	Neural mechanisms underlying chronic fatigue. Reviews in the Neurosciences, 2013, 24, 617-28.	2.9	30
11	Neural Correlates of Central Inhibition during Physical Fatigue. PLoS ONE, 2013, 8, e70949.	2.5	23
12	Immediate neural responses of appetitive motives and its relationship with hedonic appetite and body weight as revealed by magnetoencephalography. Medical Science Monitor, 2013, 19, 631-640.	1.1	19
13	Neural effects of acute stress on appetite: A magnetoencephalography study. PLoS ONE, 2020, 15, e0228039.	2.5	17
14	Fatigue sensation induced by the sounds associated with mental fatigue and its related neural activities: revealed by magnetoencephalography. Behavioral and Brain Functions, 2013, 9, 24.	3.3	15
15	Neural Mechanism of Facilitation System during Physical Fatigue. PLoS ONE, 2013, 8, e80731.	2.5	15
16	Neural mechanism of central inhibition during physical fatigue: A magnetoencephalography study. Brain Research, 2013, 1537, 117-124.	2.2	14
17	Neural regulatory mechanism of desire for food: Revealed by magnetoencephalography. Brain Research, 2014, 1543, 120-127.	2.2	14
18	Suppressive responses by visual food cues in postprandial activities of insular cortex as revealed by magnetoencephalography. Brain Research, 2014, 1568, 31-41.	2.2	14

#	Article	IF	Citations
19	Neural substrates activated by viewing others expressing fatigue: A magnetoencephalography study. Brain Research, 2012, 1455, 68-74.	2.2	13
20	The Neural Substrates of Self-Evaluation of Mental Fatigue: A Magnetoencephalography Study. PLoS ONE, 2014, 9, e95763.	2.5	13
21	Regulatory mechanism of performance in chronic cognitive fatigue. Medical Hypotheses, 2014, 82, 567-571.	1.5	13
22	The Neural Mechanisms Underlying the Decision to Rest in the Presence of Fatigue: A Magnetoencephalography Study. PLoS ONE, 2014, 9, e109740.	2.5	13
23	Neural activity induced by visual food stimuli presented out of awareness: a preliminary magnetoencephalography study. Scientific Reports, 2018, 8, 3119.	3.3	12
24	Physical fatigue increases neural activation during eyes-closed state: a magnetoencephalography study. Behavioral and Brain Functions, 2015, 11, 35.	3.3	10
25	Effects of daily levels of fatigue and acutely induced fatigue on the visual evoked magnetic response. Brain Research, 2012, 1457, 44-50.	2.2	8
26	Evidence for unconscious regulation of performance in fatigue. Scientific Reports, 2017, 7, 16103.	3.3	8
27	The Neural Mechanisms of Re-Experiencing Mental Fatigue Sensation: A Magnetoencephalography Study. PLoS ONE, 2015, 10, e0122455.	2.5	8
28	The neural effects of positively and negatively re-experiencing mental fatigue sensation: a magnetoencephalography study. Experimental Brain Research, 2018, 236, 1735-1747.	1.5	6
29	The neural mechanisms of re-experiencing physical fatigue sensation: a magnetoencephalography study. Experimental Brain Research, 2016, 234, 2433-2446.	1.5	4
30	Visual food stimulus changes resting oscillatory brain activities related to appetitive motive. Behavioral and Brain Functions, 2016, 12, 26.	3.3	4
31	Decreased alpha-band oscillatory brain activity prior to movement initiated by perception of fatigue sensation. Scientific Reports, 2019, 9, 4000.	3.3	3
32	Neural effect of physical fatigue on mental fatigue: a magnetoencephalography study. Fatigue: Biomedicine, Health and Behavior, 2016, 4, 104-114.	1.9	2
33	Neural effects of hand-grip-activity induced fatigue sensation on appetite: a magnetoencephalography study. Scientific Reports, 2019, 9, 11044.	3.3	2
34	Neural mechanism by which physical fatigue sensation suppresses physical performance: a magnetoencephalography study. Experimental Brain Research, 2022, 240, 237-247.	1.5	1
35	Brain science of exercise-eating linkage for improvements in modern human health. The Journal of Physical Fitness and Sports Medicine, 2017, 6, 295-300.	0.3	0
36	Neural correlates of the improvement of cognitive performance resulting from enhanced sense of competence: A magnetoencephalography study. PLoS ONE, 2021, 16, e0255272.	2.5	0

#	Article	IF	CITATIONS
37	Association between the total amount of electromagnetic cortical neuronal activity and a decline in motivation. Physiological Reports, 2021, 9, e15028.	1.7	o
38	Integrated Imaging on Fatigue and Chronic Fatigue. , 2020, , 227-233.		0