Filippo Maria Perna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6575804/publications.pdf Version: 2024-02-01

		117571	168321
98	3,284	34	53
papers	citations	h-index	g-index
122	122	122	2243
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Ligandâ€Free Copperâ€Catalyzed Ullmannâ€Type Câ^'O Bond Formation in Nonâ€Innocent Deep Eutectic Solve under Aerobic Conditions. ChemSusChem, 2022, 15, .	nts 3.6	14
2	Sustainable and Scalable Two-Step Synthesis of Thenfadil and Some Analogs in Deep Eutectic Solvents: From Laboratory to Industry. ACS Sustainable Chemistry and Engineering, 2022, 10, 4065-4072.	3.2	14
3	Electroactivity of weak electricigen Bacillus subtilis biofilms in solution containing deep eutectic solvent components. Bioelectrochemistry, 2022, 147, 108207.	2.4	5
4	Introducing deep eutectic solvents in enolate chemistry: synthesis of 1-arylpropan-2-ones under aerobic conditions. Reaction Chemistry and Engineering, 2021, 6, 1796-1800.	1.9	10
5	Expeditious and practical synthesis of tertiary alcohols from esters enabled by highly polarized organometallic compounds under aerobic conditions in Deep Eutectic Solvents or bulk water. Tetrahedron, 2021, 81, 131898.	1.0	25
6	Scalable Negishi Coupling between Organozinc Compounds and (Hetero)Aryl Bromides under Aerobic Conditions when using Bulk Water or Deep Eutectic Solvents with no Additional Ligands. Angewandte Chemie, 2021, 133, 10726-10730.	1.6	10
7	Scalable Negishi Coupling between Organozinc Compounds and (Hetero)Aryl Bromides under Aerobic Conditions when using Bulk Water or Deep Eutectic Solvents with no Additional Ligands. Angewandte Chemie - International Edition, 2021, 60, 10632-10636.	7.2	40
8	Oxidized Alginate Dopamine Conjugate: In Vitro Characterization for Nose-to-Brain Delivery Application. Materials, 2021, 14, 3495.	1.3	15
9	Introducing Protein Crystallization in Hydrated Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2021, 9, 8435-8449.	3.2	26
10	Synthetic applications of polar organometallic and alkali-metal reagents under air and moisture. Current Opinion in Green and Sustainable Chemistry, 2021, 30, 100487.	3.2	26
11	2-Diphenylphosphinomethyl-3-methylpyrazine. MolBank, 2021, 2021, M1267.	0.2	0
12	Advances in deep eutectic solvents and water: applications in metal- and biocatalyzed processes, in the synthesis of APIs, and other biologically active compounds. Organic and Biomolecular Chemistry, 2021, 19, 2558-2577.	1.5	87
13	Copper-catalyzed Goldberg-type C–N coupling in deep eutectic solvents (DESs) and water under aerobic conditions. Organic and Biomolecular Chemistry, 2021, 19, 1773-1779.	1.5	30
14	Deep eutectic solvents and their applications as green solvents. Current Opinion in Green and Sustainable Chemistry, 2020, 21, 27-33.	3.2	264
15	Fast and Chemoselective Addition of Highly Polarized Lithium Phosphides Generated in Deep Eutectic Solvents to Aldehydes and Epoxides. ChemSusChem, 2020, 13, 4967-4973.	3.6	26
16	Ligandâ€Free Suzuki–Miyaura Crossâ€Coupling Reactions in Deep Eutectic Solvents: Synthesis of Benzodithiophene Derivatives and Study of their Optical and Electrochemical Performance. European Journal of Organic Chemistry, 2020, 2020, 6981-6988.	1.2	20
17	Regiodivergent synthesis of functionalized pyrimidines and imidazoles through phenacyl azides in deep eutectic solvents. Beilstein Journal of Organic Chemistry, 2020, 16, 1915-1923.	1.3	16
18	Boosting Conjugate Addition to Nitroolefins Using Lithium Tetraorganozincates: Synthetic Strategies and Structural Insights. Chemistry - A European Journal, 2020, 26, 8742-8748.	1.7	21

FILIPPO MARIA PERNA

#	Article	IF	CITATIONS
19	Ecoâ€Friendly Sugarâ€Based Natural Deep Eutectic Solvents as Effective Electrolyte Solutions for Dyeâ€Sensitized Solar Cells. ChemElectroChem, 2020, 7, 1707-1712.	1.7	23
20	Sustainable Ligandâ€Free Heterogeneous Palladiumâ€Catalyzed Sonogashira Crossâ€Coupling Reaction in Deep Eutectic Solvents. ChemCatChem, 2020, 12, 1979-1984.	1.8	55
21	Deep Eutectic Solvents as Effective Reaction Media for the Synthesis of 2-Hydroxyphenylbenzimidazole-Based Scaffolds en Route to Donepezil-Like Compounds. Molecules, 2020, 25, 574.	1.7	22
22	Sustainable chemo-enzymatic preparation of enantiopure (<i>R</i>)-β-hydroxy-1,2,3-triazoles <i>via</i> lactic acid bacteria-mediated bioreduction of aromatic ketones and a heterogeneous "click― cycloaddition reaction in deep eutectic solvents. Reaction Chemistry and Engineering, 2020, 5, 859-864.	1.9	22
23	Addition of Highly Polarized Organometallic Compounds to <i>Nâ€ŧert</i> â€Butanesulfinyl Imines in Deep Eutectic Solvents under Air: Preparation of Chiral Amines of Pharmaceutical Interest. ChemSusChem, 2020, 13, 3583-3588.	3.6	35
24	Streamlined Routes to Phenacyl Azides and 2,5â€Diarylpyrazines Enabled by Deep Eutectic Solvents. European Journal of Organic Chemistry, 2019, 2019, 5557-5562.	1.2	22
25	First Direct Evidence of an <i>ortho</i> â€Lithiated Aryloxetane: Solid and Solution Structure, and Dynamics. European Journal of Organic Chemistry, 2019, 2019, 5549-5556.	1.2	6
26	Reshaping Ullmann Amine Synthesis in Deep Eutectic Solvents: A Mild Approach for Cu-Catalyzed C–N Coupling Reactions With No Additional Ligands. Frontiers in Chemistry, 2019, 7, 723.	1.8	47
27	Directed <i>ortho</i> -metalation–nucleophilic acyl substitution strategies in deep eutectic solvents: the organolithium base dictates the chemoselectivity. Chemical Communications, 2019, 55, 7741-7744.	2.2	58
28	Reconfigurable and optically transparent microwave absorbers based on deep eutectic solvent-gated graphene. Scientific Reports, 2019, 9, 5463.	1.6	22
29	(S)-Ethyl 2-(tert-butoxycarbonylamino)-3-(2-iodo-4,5-methylenedioxyphenyl)propanoate. MolBank, 2019, 2019, M1049.	0.2	0
30	Water and Sodium Chloride: Essential Ingredients for Robust and Fast Pd atalysed Cross oupling Reactions between Organolithium Reagents and (Hetero)aryl Halides. Angewandte Chemie, 2019, 131, 1813-1816.	1.6	13
31	Water and Sodium Chloride: Essential Ingredients for Robust and Fast Pd atalysed Crossâ€Coupling Reactions between Organolithium Reagents and (Hetero)aryl Halides. Angewandte Chemie - International Edition, 2019, 58, 1799-1802.	7.2	61
32	Designing Eco‧ustainable Dye‧ensitized Solar Cells by the Use of a Mentholâ€Based Hydrophobic Eutectic Solvent as an Effective Electrolyte Medium. Chemistry - A European Journal, 2018, 24, 17656-17659.	1.7	47
33	Natural Scaffolds with Multi-Target Activity for the Potential Treatment of Alzheimer's Disease. Molecules, 2018, 23, 2182.	1.7	27
34	Bio-inspired choline chloride-based deep eutectic solvents as electrolytes for lithium-ion batteries. Solid State Ionics, 2018, 323, 44-48.	1.3	104
35	Whole-Cell Biocatalyst for Chemoenzymatic Total Synthesis of Rivastigmine. Catalysts, 2018, 8, 55.	1.6	45
36	Novel bisphosphonates with antiresorptive effect in bone mineralization and osteoclastogenesis. European Journal of Medicinal Chemistry, 2018, 158, 184-200.	2.6	19

FILIPPO MARIA PERNA

#	Article	IF	CITATIONS
37	Ligandâ€Free Bioinspired Suzuki–Miyaura Coupling Reactions using Aryltrifluoroborates as Effective Partners in Deep Eutectic Solvents. ChemSusChem, 2018, 11, 3495-3501.	3.6	60
38	Programming cascade reactions interfacing biocatalysis with transition-metal catalysis in <i>Deep Eutectic Solvents</i> as biorenewable reaction media. Green Chemistry, 2018, 20, 3468-3475.	4.6	96
39	Solvent-catalyzed umpolung carbonsulfur bond-forming reactions by nucleophilic addition of thiolate and sulfinate ions to in situ–derived nitrosoalkenes in deep eutectic solvents. Comptes Rendus Chimie, 2017, 20, 617-623.	0.2	15
40	One-pot sustainable synthesis of tertiary alcohols by combining ruthenium-catalysed isomerisation of allylic alcohols and chemoselective addition of polar organometallic reagents in deep eutectic solvents. Green Chemistry, 2017, 19, 3069-3077.	4.6	63
41	Unveiling the Hidden Performance of Whole Cells in the Asymmetric Bioreduction of Aryl ontaining Ketones in Aqueous Deep Eutectic Solvents. Advanced Synthesis and Catalysis, 2017, 359, 1049-1057.	2.1	73
42	Functional Enzymes in Nonaqueous Environment: The Case of Photosynthetic Reaction Centers in Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2017, 5, 7768-7776.	3.2	56
43	Unprecedented Nucleophilic Additions of Highly Polar Organometallic Compounds to Imines and Nitriles Using Water as a Nonâ€Innocent Reaction Medium. Angewandte Chemie - International Edition, 2017, 56, 10200-10203.	7.2	90
44	Unprecedented Nucleophilic Additions of Highly Polar Organometallic Compounds to Imines and Nitriles Using Water as a Nonâ€Innocent Reaction Medium. Angewandte Chemie, 2017, 129, 10334-10337.	1.6	34
45	Dye ensitized Solar Cells that use an Aqueous Choline Chlorideâ€Based Deep Eutectic Solvent as Effective Electrolyte Solution. Energy Technology, 2017, 5, 345-353.	1.8	80
46	Stereoselective Chemoenzymatic Synthesis of Optically Active Aryl-Substituted Oxygen-Containing Heterocycles. Catalysts, 2017, 7, 37.	1.6	10
47	Deep Eutectic Solvents as Novel and Effective Extraction Media for Quantitative Determination of Ochratoxin A in Wheat and Derived Products. Molecules, 2017, 22, 121.	1.7	35
48	2-(tert-Butyl)-4-phenyloxetane. MolBank, 2017, 2017, M930.	0.2	2
49	An Expeditious and Greener Synthesis of 2-Aminoimidazoles in Deep Eutectic Solvents. Molecules, 2016, 21, 924.	1.7	44
50	Toward Customized Tetrahydropyran Derivatives through Regioselective αâ€Lithiation and Functionalization of 2â€Phenyltetrahydropyran. European Journal of Organic Chemistry, 2016, 2016, 3157-3161.	1.2	12
51	Recent Developments in the Lithiation Reactions of Oxygen Heterocycles. Advances in Heterocyclic Chemistry, 2016, , 91-127.	0.9	7
52	Front Cover: Toward Customized Tetrahydropyran Derivatives through Regioselective α-Lithiation and Functionalization of 2-Phenyltetrahydropyran (Eur. J. Org. Chem. 19/2016). European Journal of Organic Chemistry, 2016, 2016, 3130-3130.	1.2	0
53	Asymmetric chemoenzymatic synthesis of 1,3-diols and 2,4-disubstituted aryloxetanes by using whole cell biocatalysts. Organic and Biomolecular Chemistry, 2016, 14, 11438-11445.	1.5	17
54	Synthesis of thiophenes in a deep eutectic solvent: heterocyclodehydration and iodocyclization of 1-mercapto-3-yn-2-ols in a choline chloride/glycerol medium. Tetrahedron, 2016, 72, 4239-4244.	1.0	50

#	Article	IF	CITATIONS
55	Cheap and environmentally sustainable stereoselective arylketones reduction by Lactobacillus reuteri whole cells. Journal of Molecular Catalysis B: Enzymatic, 2016, 124, 29-37.	1.8	21
56	Water opens the door to organolithiums and Grignard reagents: exploring and comparing the reactivity of highly polar organometallic compounds in unconventional reaction media towards the synthesis of tetrahydrofurans. Chemical Science, 2016, 7, 1192-1199.	3.7	106
57	Stereoselective organocatalysed reactions in deep eutectic solvents: highly tunable and biorenewable reaction media for sustainable organic synthesis. Green Chemistry, 2016, 18, 792-797.	4.6	103
58	Conjugate Additions of Organolithiums to Electron-poor Olefins: A Simple and Useful Approach to the Synthesis of Complex Molecules. Current Organic Chemistry, 2016, 21, 190-217.	0.9	6
59	Unexpected lateral-lithiation-induced alkylative ring opening of tetrahydrofurans in deep eutectic solvents: synthesis of functionalised primary alcohols. Chemical Communications, 2015, 51, 9459-9462.	2.2	79
60	Organotrifluoroborates as attractive self-assembling systems: the case of bifunctional dipotassium phenylene-1,4-bis(trifluoroborate). Dalton Transactions, 2015, 44, 19447-19450.	1.6	14
61	Regio- and stereochemical aspects in the functionalisation of a lithiated 2-(3-chloro-2-methyl-1-propenyl)-2-oxazoline: electrophile and temperature effects. Tetrahedron, 2015, 71, 7451-7458.	1.0	Ο
62	Lithiated oxazolinyloxiranes and oxazolinylaziridines: key players in organic synthesis. Pure and Applied Chemistry, 2014, 86, 913-924.	0.9	3
63	Efficient Regioselective Synthesis of 3,4,5â€Trisubstituted 1,2,4â€Triazoles on the Basis of a Lithiation‑Trapping Sequence. European Journal of Organic Chemistry, 2014, 2014, 6653-6657.	1.2	6
64	"The Great Beauty―of organolithium chemistry: a land still worth exploring. Dalton Transactions, 2014, 43, 14204-14210.	1.6	76
65	Direct observation of a lithiated oxirane: a synergistic study using spectroscopic, crystallographic, and theoretical methods on the structure and stereodynamics of lithiated ortho-trifluoromethyl styrene oxide. Chemical Science, 2014, 5, 528-538.	3.7	50
66	Regioselective desymmetrization of diaryltetrahydrofurans via directed ortho-lithiation: an unexpected help from green chemistry. Chemical Communications, 2014, 50, 8655-8658.	2.2	89
67	Preparation of Polysubstituted Isochromanes by Addition of ortho-Lithiated Aryloxiranes to Enaminones. Journal of Organic Chemistry, 2013, 78, 11059-11065.	1.7	23
68	Gated access to α-lithiated phenyltetrahydrofuran: functionalisation via direct lithiation of the parent oxygen heterocycle. Chemical Communications, 2013, 49, 10160.	2.2	47
69	Kluyveromyces marxianus CBS 6556 growing cells as a new biocatalyst in the asymmetric reduction of substituted acetophenones. Tetrahedron: Asymmetry, 2013, 24, 389-394.	1.8	21
70	Dynamic resolution of lithiated ortho-trifluoromethyl styrene oxide and the effect of chiral diamines on the barrier to enantiomerisation. Chemical Communications, 2013, 49, 4911.	2.2	24
71	Exploiting the Lithiationâ€Directing Ability of Oxetane for the Regioselective Preparation of Functionalized 2â€Aryloxetane Scaffolds under Mild Conditions. Angewandte Chemie - International Edition, 2012, 51, 7532-7536.	7.2	48
72	2-Lithiated-2-phenyloxetane: a new attractive synthon for the preparation of oxetane derivatives. Chemical Communications, 2011, 47, 9918.	2.2	56

FILIPPO MARIA PERNA

#	Article	IF	CITATIONS
73	Screening on the use of Kluyveromyces marxianus CBS 6556 growing cells as enantioselective biocatalysts for ketone reductions. Tetrahedron: Asymmetry, 2011, 22, 1985-1993.	1.8	30
74	Solvent and TMEDA Effects on the Configurational Stability of Chiral Lithiated Aryloxiranes. Chemistry - A European Journal, 2011, 17, 8216-8225.	1.7	41
75	On the Configurational Stability of α-Lithiated Sulfurated Styrene Oxides: Synthetic and Mechanistic Aspects. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 1274-1277.	0.8	1
76	Synthesis of Conjugated Tri(hetero)aryl Derivatives Based on One-Pot Double Suzuki-Miyaura Couplings Using Bifunctional Dipotassium Phenylene-1,4-Bis(Trifluoroborate). Synlett, 2011, 2011, 1761-1765.	1.0	3
77	Lithiated Fluorinated Styrene Oxides: Configurational Stability, Synthetic Applications, and Mechanistic Insight. Chemistry - A European Journal, 2010, 16, 9778-9788.	1.7	35
78	On the Dichotomic Reactivity of Lithiated Styrene Oxide: A Computational and Multinuclear Magnetic Resonance Investigation. Chemistry - A European Journal, 2009, 15, 7958-7979.	1.7	34
79	Resolution of phthalans obtained by ortho-litiathion of aryloxiranes by enantioselective high-performance liquid chromatography: Performances of various chiral stationary phases. Journal of Chromatography A, 2009, 1216, 3048-3053.	1.8	9
80	2-Lithio-3,3-dimethyl-2-oxazolinyloxirane: Carbanion or Azaenolate? Structure, Configurational Stability, and Stereodynamics in Solution. Journal of Organic Chemistry, 2008, 73, 9552-9564.	1.7	36
81	Synthesis of 2,3-Dihydro-10bH-oxazolo[2,3-a]isoquinolines fromortho-Lithiated Phenyloxazolinyloxiranesâ€. Journal of Organic Chemistry, 2007, 72, 6316-6319.	1.7	13
82	Synthesis of 1,3-Dihydrobenzo[c]furans from Ortho-Lithiated Aryloxiranes. Journal of Organic Chemistry, 2006, 71, 3984-3987.	1.7	27
83	Synthesis of α-Oxazolinylalkanamides ChemInform, 2005, 36, no.	0.1	0
84	Stereoselective Synthesis of Pentacarbonyl(3-oxa-2-bicyclo[3.1.0]hexylidene)- and Pentacarbonyl(cyclopropylmethoxymethylene)tungsten Compounds on the Route to Cyclopropane-?-lactones and -carboxylates ChemInform, 2005, 36, no.	0.1	0
85	Asymmetric Synthesis of Cyclopropanes from Lithiated Aryloxiranes and α,β-Unsaturated Fischer Carbene Complexes ChemInform, 2005, 36, no.	0.1	0
86	An Efficient Route to Tetrahydronaphthols via Addition of Ortho-Lithiated Stilbene Oxides to α,β-Unsaturated Fischer Carbene Complexes. Organic Letters, 2005, 7, 4895-4898.	2.4	25
87	Asymmetric Synthesis of Cyclopropanes from Lithiated Aryloxiranes and α,β-Unsaturated Fischer Carbene Complexes. Journal of Organic Chemistry, 2005, 70, 5852-5858.	1.7	34
88	Synthetic Approach to Substituted Cyclopropanes Based on the Coupling Reaction of Lithiated Chloroalkyloxazolines with Fischer Carbene Complexes ChemInform, 2004, 35, no.	0.1	0
89	Synthesis of α-oxazolinylalkanamides. Tetrahedron Letters, 2004, 45, 8027-8030.	0.7	3
90	Stereoselective Synthesis of Pentacarbonyl(3-oxa-2-bicyclo[3.1.0]hexylidene)- and Pentacarbonyl(cyclopropylmethoxymethylene)tungsten Compounds on the Route to Cyclopropane-l ³ -lactones and -carboxylates. Journal of Organic Chemistry, 2004, 69, 9204-9207.	1.7	20

#	Article	IF	CITATIONS
91	Synthetic Approach To Substituted Cyclopropanes Based on the Coupling Reaction of Lithiated Chloroalkyloxazolines with Fischer Carbene Complexes. Journal of Organic Chemistry, 2004, 69, 5480-5482.	1.7	15
92	An Unexpected Base-Promoted Isomerization of Oxazolinylaryl Oxiranes: Synthesis of Oxazolinylaryl Alkanones ChemInform, 2003, 34, no.	0.1	0
93	Synthesis of Allylic Alcohols from Oxazolinyloxiranes ChemInform, 2003, 34, no.	0.1	0
94	Isomerization of Oxazolinyl Allylic Alcohols: Synthesis of 3-Alkylidene-2-iminooxetanes ChemInform, 2003, 34, no.	0.1	0
95	Isomerization of oxazolinyl allylic alcohols: synthesis of 3-alkylidene-2-iminooxetanes. Tetrahedron Letters, 2003, 44, 3477-3481.	0.7	7
96	Synthesis of Allylic Alcohols from Oxazolinyloxiranes. Journal of Organic Chemistry, 2002, 67, 8351-8359.	1.7	12
97	An unexpected base-promoted isomerization of oxazolinylaryl oxiranes: synthesis of oxazolinylaryl alkanones. Tetrahedron Letters, 2002, 43, 7739-7742.	0.7	6
98	Use of readily available chiral compounds related to the betti base in the enantioselective addition of distributions to and aldebudge. Tatrabadron, 1999, 55, 14685, 14692	1.0	110

diethylzinc to aryl aldehydes. Tetrahedron, 1999, 55, 14685-14692. 98