Pablo Villoslada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6575703/publications.pdf

Version: 2024-02-01

196 papers 13,546 citations

23567 58 h-index 24982 109 g-index

208 all docs

208 docs citations

times ranked

208

18825 citing authors

#	Article	IF	CITATIONS
1	Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature, 2011, 476, 214-219.	27.8	2,400
2	MRI characteristics of neuromyelitis optica spectrum disorder. Neurology, 2015, 84, 1165-1173.	1.1	523
3	Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurology, The, 2017, 16, 797-812.	10.2	397
4	The APOSTEL recommendations for reporting quantitative optical coherence tomography studies. Neurology, 2016, 86, 2303-2309.	1.1	331
5	Heterogeneity at the HLA-DRB1 locus and risk for multiple sclerosis. Human Molecular Genetics, 2006, 15, 2813-2824.	2.9	279
6	Isolated demyelinating syndromes: comparison of different MR imaging criteria to predict conversion to clinically definite multiple sclerosis. American Journal of Neuroradiology, 2000, 21, 702-6.	2.4	277
7	Diagnostic accuracy of retinal abnormalities in predicting disease activity in MS. Neurology, 2007, 68, 1488-1494.	1.1	266
8	Retinal thickness measured with optical coherence tomography and risk of disability worsening in multiple sclerosis: a cohort study. Lancet Neurology, The, 2016, 15, 574-584.	10.2	266
9	The investigation of acute optic neuritis: a review and proposed protocol. Nature Reviews Neurology, 2014, 10, 447-458.	10.1	248
10	Analysis and Application of European Genetic Substructure Using 300 K SNP Information. PLoS Genetics, 2008, 4, e4.	3.5	231
11	Human Nerve Growth Factor Protects Common Marmosets against Autoimmune Encephalomyelitis by Switching the Balance of T Helper Cell Type 1 and 2 Cytokines within the Central Nervous System. Journal of Experimental Medicine, 2000, 191, 1799-1806.	8.5	223
12	Transâ€synaptic axonal degeneration in the visual pathway in multiple sclerosis. Annals of Neurology, 2014, 75, 98-107.	5 . 3	206
13	European Population Substructure: Clustering of Northern and Southern Populations. PLoS Genetics, 2006, 2, e143.	3.5	205
14	Cognitive impairment in patients with multiple sclerosis using the Brief Repeatable Battery-Neuropsychology test. Multiple Sclerosis Journal, 2006, 12, 187-195.	3.0	197
15	Oxidative Stress and Proinflammatory Cytokines Contribute to Demyelination and Axonal Damage in a Cerebellar Culture Model of Neuroinflammation. PLoS ONE, 2013, 8, e54722.	2.5	195
16	Making sense of big data in health research: Towards an EU action plan. Genome Medicine, 2016, 8, 71.	8.2	190
17	Fatigue in multiple sclerosis is associated with the disruption of frontal and parietal pathways. Multiple Sclerosis Journal, 2009, 15, 337-344.	3.0	186
18	Modules, networks and systems medicine for understanding disease and aiding diagnosis. Genome Medicine, 2014, 6, 82.	8.2	169

#	Article	IF	CITATIONS
19	Human endogenous retrovirus type W envelope expression in blood and brain cells provides new insights into multiple sclerosis disease. Multiple Sclerosis Journal, 2012, 18, 1721-1736.	3.0	165
20	Antibodies to native myelin oligodendrocyte glycoprotein are serologic markers of early inflammation in multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2280-2285.	7.1	159
21	Genome-Wide Pharmacogenomic Analysis of the Response to Interferon Beta Therapy in Multiple Sclerosis. Archives of Neurology, 2008, 65, 337-44.	4.5	154
22	Retinal nerve fiber layer atrophy is associated with physical and cognitive disability in multiple sclerosis. Multiple Sclerosis Journal, 2008, 14, 906-912.	3.0	148
23	Transcription-Based Prediction of Response to IFN \hat{I}^2 Using Supervised Computational Methods. PLoS Biology, 2004, 3, e2.	5.6	144
24	Dynamics of retinal injury after acute optic neuritis. Annals of Neurology, 2015, 77, 517-528.	5. 3	142
25	Randomized Placebo-Controlled Phase II Trial of Autologous Mesenchymal Stem Cells in Multiple Sclerosis. PLoS ONE, 2014, 9, e113936.	2.5	131
26	ILâ€10 suppressor activity and <i>ex vivo</i> Tr1 cell function are impaired in multiple sclerosis. European Journal of Immunology, 2008, 38, 576-586.	2.9	120
27	Immune tolerance in multiple sclerosis and neuromyelitis optica with peptide-loaded tolerogenic dendritic cells in a phase 1b trial. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8463-8470.	7.1	112
28	Optimal intereye difference thresholds by optical coherence tomography in multiple sclerosis: An international study. Annals of Neurology, 2019, 85, 618-629.	5.3	104
29	Systemic inflammation induces axon injury during brain inflammation. Annals of Neurology, 2011, 70, 932-942.	5. 3	103
30	Fractal dimension and white matter changes in multiple sclerosis. NeuroImage, 2007, 36, 543-549.	4.2	102
31	Immune responses against the myelin/oligodendrocyte glycoprotein in experimental autoimmune demyelination. Journal of Clinical Immunology, 2001, 21, 155-170.	3.8	99
32	A computational analysis of protein-protein interaction networks in neurodegenerative diseases. BMC Systems Biology, 2008, 2, 52.	3.0	99
33	Systems biology and its application to the understanding of neurological diseases. Annals of Neurology, 2009, 65, 124-139.	5.3	99
34	APOSTEL 2.0 Recommendations for Reporting Quantitative Optical Coherence Tomography Studies. Neurology, 2021, 97, 68-79.	1.1	96
35	Contribution of White Matter Lesions to Gray Matter Atrophy in Multiple Sclerosis. Archives of Neurology, 2009, 66, 173-9.	4.5	94
36	Increased expression of cystine/glutamate antiporter in multiple sclerosis. Journal of Neuroinflammation, 2011, 8, 63.	7.2	94

3

#	Article	IF	Citations
37	Fractal-dimension analysis detects cerebral changes in preterm infants with and without intrauterine growth restriction. Neurolmage, 2010, 53, 1225-1232.	4.2	91
38	Metabolomic signatures associated with disease severity in multiple sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e321.	6.0	89
39	The semantic organization of the animal category: evidence from semantic verbal fluency and network theory. Cognitive Processing, 2011, 12, 183-196.	1.4	87
40	Structural networks involved in attention and executive functions in multiple sclerosis. NeuroImage: Clinical, 2017, 13, 288-296.	2.7	87
41	Analysis of the <i>C90rf72</i> Cene in Patients with Amyotrophic Lateral Sclerosis in Spain and Different Populations Worldwide. Human Mutation, 2013, 34, 79-82.	2.5	85
42	Fractal dimension analysis of grey matter in multiple sclerosis. Journal of the Neurological Sciences, 2009, 282, 67-71.	0.6	83
43	Mapping the brain pathways of declarative verbal memory: Evidence from white matter lesions in the living human brain. Neurolmage, 2008, 42, 1237-1243.	4.2	82
44	Acute optic neuritis. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e135.	6.0	81
45	The HLA locus and multiple sclerosis in Spain. Role in disease susceptibility, clinical course and response to interferon- \hat{l}^2 . Journal of Neuroimmunology, 2002, 130, 194-201.	2.3	78
46	Pharmacogenomic analysis of interferon receptor polymorphisms in multiple sclerosis. Genes and Immunity, 2003, 4, 147-152.	4.1	77
47	Role of nerve growth factor and other trophic factors in brain inflammation. Progress in Brain Research, 2004, 146, 403-414.	1.4	77
48	European Population Genetic Substructure: Further Definition of Ancestry Informative Markers for Distinguishing among Diverse European Ethnic Groups. Molecular Medicine, 2009, 15, 371-383.	4.4	77
49	Multicenter reliability of semiautomatic retinal layer segmentation using OCT. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e449.	6.0	76
50	Genome-Wide Analysis of Wild-Type Epstein–Barr Virus Genomes Derived from Healthy Individuals of the 1000 Genomes Project. Genome Biology and Evolution, 2014, 6, 846-860.	2.5	74
51	The disruption of mitochondrial axonal transport is an early event in neuroinflammation. Journal of Neuroinflammation, 2015, 12, 152.	7.2	68
52	Influence of Corpus Callosum Damage on Cognition and Physical Disability in Multiple Sclerosis: A Multimodal Study. PLoS ONE, 2012, 7, e37167.	2.5	68
53	Lesions in the Posterior Visual Pathway Promote Trans-Synaptic Degeneration of Retinal Ganglion Cells. PLoS ONE, 2014, 9, e97444.	2.5	66
54	Methylthioadenosine reverses brain autoimmune disease. Annals of Neurology, 2006, 60, 323-334.	5.3	65

#	Article	IF	CITATIONS
55	Autoreactivity to myelin antigens: myelin/oligodendrocyte glycoprotein is a prevalent autoantigen. Journal of Neuroimmunology, 1999, 99, 36-43.	2.3	64
56	Color vision is strongly associated with retinal thinning in multiple sclerosis. Multiple Sclerosis Journal, 2012, 18, 991-999.	3.0	64
57	Gain-of-function of P2X7 receptor gene variants in multiple sclerosis. Cell Calcium, 2011, 50, 468-472.	2.4	63
58	Use of Advanced Magnetic Resonance Imaging Techniques in Neuromyelitis Optica Spectrum Disorder. JAMA Neurology, 2015, 72, 815.	9.0	59
59	Tolerogenic Dendritic Cells as a Promising Antigen-Specific Therapy in the Treatment of Multiple Sclerosis and Neuromyelitis Optica From Preclinical to Clinical Trials. Frontiers in Immunology, 2018, 9, 1169.	4.8	59
60	Frequency, heterogeneity and encephalitogenicity of T cells specific for myelin oligodendrocyte glycoprotein in naive outbred primates. European Journal of Immunology, 2001, 31, 2942-2950.	2.9	54
61	Memory decline evolves independently of disease activity in MS. Multiple Sclerosis Journal, 2008, 14, 947-953.	3.0	53
62	Usefulness of peripapillary nerve fiber layer thickness assessed by optical coherence tomography as a biomarker for Alzheimer's disease. Scientific Reports, 2018, 8, 16345.	3.3	52
63	Immunotherapy for neurological diseases. Clinical Immunology, 2008, 128, 294-305.	3.2	51
64	Association of an EAAT2 polymorphism with higher glutamate concentration in relapsing multiple sclerosis. Journal of Neuroimmunology, 2008, 195, 194-198.	2.3	51
65	The proteasome is a major autoantigen in multiple sclerosis. Brain, 2002, 125, 2658-2667.	7.6	48
66	Cognitive functions in multiple sclerosis: impact of gray matter integrity. Multiple Sclerosis Journal, 2014, 20, 424-432.	3.0	47
67	Brain pathways of verbal working memory. NeuroImage, 2009, 47, 773-778.	4.2	45
68	The visual pathway as a model to understand brain damage in multiple sclerosis. Multiple Sclerosis Journal, 2014, 20, 1678-1685.	3.0	45
69	A Network Analysis of the Human T-Cell Activation Gene Network Identifies Jagged 1 as a Therapeutic Target for Autoimmune Diseases. PLoS ONE, 2007, 2, e1222.	2.5	44
70	Allele-Specific Gene Expression Is Widespread Across the Genome and Biological Processes. PLoS ONE, 2009, 4, e4150.	2.5	44
71	Computational classifiers for predicting the short-term course of Multiple sclerosis. BMC Neurology, 2011, 11, 67.	1.8	43
72	Usefulness of optical coherence tomography to distinguish optic neuritis associated with AQP4 or MOG in neuromyelitis optica spectrum disorders. Therapeutic Advances in Neurological Disorders, 2016, 9, 436-440.	3.5	43

#	Article	IF	Citations
73	Data integration and systems biology approaches for biomarker discovery: Challenges and opportunities for multiple sclerosis. Journal of Neuroimmunology, 2012, 248, 58-65.	2.3	42
74	MAPK pathway and B cells overactivation in multiple sclerosis revealed by phosphoproteomics and genomic analysis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9671-9676.	7.1	42
75	Computational disease modeling – fact or fiction?. BMC Systems Biology, 2009, 3, 56.	3.0	41
76	Lexical access changes in patients with multiple sclerosis: A two-year follow-up study. Journal of Clinical and Experimental Neuropsychology, 2011, 33, 169-175.	1.3	40
77	Response to immunotherapy in CLIPPERS syndrome. Journal of Neurology, 2011, 258, 2090-2092.	3.6	40
78	Multiple Sclerosis Susceptibility Genes: Associations with Relapse Severity and Recovery. PLoS ONE, 2013, 8, e75416.	2.5	40
79	Improved Framework for Tractography Reconstruction of the Optic Radiation. PLoS ONE, 2015, 10, e0137064.	2.5	39
80	Challenges and opportunities in designing clinical trials for neuromyelitis optica. Neurology, 2015, 84, 1805-1815.	1.1	39
81	Restoring immune tolerance in neuromyelitis optica. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e277.	6.0	39
82	Reversible white matter alterations in encephalopathy associated with autoimmune thyroid disease. Journal of Neurology, 2002, 249, 1063-1065.	3.6	38
83	First-in-class inhibitor of the T cell receptor for the treatment of autoimmune diseases. Science Translational Medicine, 2016, 8, 370ra184.	12.4	38
84	Modeling the effector - regulatory T cell cross-regulation reveals the intrinsic character of relapses in Multiple Sclerosis. BMC Systems Biology, 2011, 5, 114.	3.0	37
85	Power estimation for non-standardized multisite studies. Neurolmage, 2016, 134, 281-294.	4.2	36
86	Pituitary-ovary axis and ovarian reserve in fertile women with multiple sclerosis: A pilot study. Multiple Sclerosis Journal, 2016, 22, 564-568.	3.0	36
87	A genomic screen of Spanish multiple sclerosis patients reveals multiple loci associated with the disease. Journal of Neuroimmunology, 2003, 143, 124-128.	2.3	35
88	Analysis of prognostic factors associated with longitudinally extensive transverse myelitis. Multiple Sclerosis Journal, 2013, 19, 742-748.	3.0	35
89	Colour vision impairment is associated with disease severity in multiple sclerosis. Multiple Sclerosis Journal, 2014, 20, 1207-1216.	3.0	35
90	Restoring immune tolerance in neuromyelitis optica. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e276.	6.0	35

#	Article	IF	Citations
91	Targeting NGF pathway for developing neuroprotective therapies for multiple sclerosis and other neurological diseases. Archives Italiennes De Biologie, 2011, 149, 183-92.	0.4	35
92	Retinal periphlebitis is associated with multiple sclerosis severity. Neurology, 2013, 81, 877-881.	1.1	34
93	Retinal inner nuclear layer volume reflects inflammatory disease activity in multiple sclerosis; a longitudinal OCT study. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2019, 5, 205521731987158.	1.0	34
94	Triiodothyronine Administration Ameliorates the Demyelination/Remyelination Ratio in a Non-Human Primate Model of Multiple Sclerosis by Correcting Tissue Hypothyroidism. Journal of Neuroendocrinology, 2011, 23, 778-790.	2.6	33
95	Dynamics and heterogeneity of brain damage in multiple sclerosis. PLoS Computational Biology, 2017, 13, e1005757.	3.2	33
96	Evaluation of the 3D fractal dimension as a marker of structural brain complexity in multipleâ€acquisition MRI. Human Brain Mapping, 2019, 40, 3299-3320.	3.6	33
97	Artificial intelligence extension of the OSCARâ€IB criteria. Annals of Clinical and Translational Neurology, 2021, 8, 1528-1542.	3.7	33
98	Is the incidence of optic neuritis rising? Evidence from an epidemiological study in Barcelona (Spain), 2008–2012. Journal of Neurology, 2014, 261, 759-767.	3.6	32
99	Assessing Biological and Methodological Aspects of Brain Volume Loss in Multiple Sclerosis. JAMA Neurology, 2018, 75, 1246.	9.0	32
100	Frequency of Multiple Sclerosis in Menorca, Balearic Islands, Spain. Neuroepidemiology, 2001, 20, 129-133.	2.3	31
101	New targets and therapeutics for neuroprotection, remyelination and repair in multiple sclerosis. Expert Opinion on Investigational Drugs, 2020, 29, 443-459.	4.1	31
102	Abnormalities in brain synchronization are correlated with cognitive impairment in multiple sclerosis. Multiple Sclerosis Journal, 2009, 15, 509-516.	3.0	30
103	Antigen-specific tolerance to self-antigens in protein replacement therapy, gene therapy and autoimmunity. Current Opinion in Immunology, 2019, 61, 46-53.	5.5	30
104	Linkage disequilibrium screening for multiple sclerosis implicates JAG1 and POU2AF1 as susceptibility genes in Europeans. Journal of Neuroimmunology, 2006, 179, 108-116.	2.3	29
105	Genomic regulation of CTLA4 and Multiple Sclerosis. Journal of Neuroimmunology, 2008, 203, 108-115.	2.3	29
106	Mitochondrial haplogroups in Basque multiple sclerosis patients. Multiple Sclerosis Journal, 2004, 10, 532-535.	3.0	28
107	Clinical characteristics of responders to interferon therapy for relapsing MS. Neurology, 2004, 62, 1653-1653.	1.1	26
108	The multiple sclerosis visual pathway cohort: understanding neurodegeneration in MS. BMC Research Notes, 2014, 7, 910.	1.4	26

#	Article	IF	CITATIONS
109	Knowledge Retrieval from PubMed Abstracts and Electronic Medical Records with the Multiple Sclerosis Ontology. PLoS ONE, 2015, 10, e0116718.	2.5	26
110	Jun expression is found in neurons located in the vicinity of subacute plaques in patients with multiple sclerosis. Neuroscience Letters, 1996, 212, 95-98.	2.1	25
111	Pharmacogenomics of Type I interferon therapy: A survey of response-modifying genes. Cytokine and Growth Factor Reviews, 2007, 18, 211-222.	7.2	25
112	Pharmacogenomics of multiple sclerosis: in search for a personalized therapy. Expert Opinion on Pharmacotherapy, 2008, 9, 3053-3067.	1.8	25
113	Preclinical studies of methylthioadenosine for the treatment of multiple sclerosis. Multiple Sclerosis Journal, 2010, 16, 1102-1108.	3.0	25
114	Dynamic molecular monitoring of retina inflammation by <i>in vivo</i> Raman spectroscopy coupled with multivariate analysis. Journal of Biophotonics, 2014, 7, 724-734.	2.3	25
115	Dynamic cross-regulation of antigen-specific effector and regulatory T cell subpopulations and microglia in brain autoimmunity. BMC Systems Biology, 2013, 7, 34.	3.0	24
116	Signaling networks in MS: A systems-based approach to developing new pharmacological therapies. Multiple Sclerosis Journal, 2015, 21, 138-146.	3.0	24
117	SWITCHER-RANDOM-WALKS: A COGNITIVE-INSPIRED MECHANISM FOR NETWORK EXPLORATION. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 913-922.	1.7	23
118	Early retinal atrophy predicts long-term visual impairment after acute optic neuritis. Multiple Sclerosis Journal, 2018, 24, 1196-1204.	3.0	23
119	Retrograde retinal damage after acute optic tract lesion in MS. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 824-826.	1.9	22
120	Walking function in clinical monitoring of multiple sclerosis by telemedicine. Journal of Neurology, 2015, 262, 1706-1713.	3.6	22
121	A preliminary study of the frequency of anti-basal ganglia antibodies and streptococcal infection in attention deficit/hyperactivity disorder. Journal of Neurology, 2009, 256, 1103-1108.	3.6	21
122	Analysis of antibodies to surface epitopes of contactin-2 in multiple sclerosis. Journal of Neuroimmunology, 2012, 244, 103-106.	2.3	21
123	Predictors of vision impairment in Multiple Sclerosis. PLoS ONE, 2018, 13, e0195856.	2.5	21
124	Harnessing electronic medical records to advance research on multiple sclerosis. Multiple Sclerosis Journal, 2019, 25, 408-418.	3.0	21
125	Cortical fractal dimension predicts disability worsening in Multiple Sclerosis patients. NeuroImage: Clinical, 2021, 30, 102653.	2.7	21
126	The Role of Optical Coherence Tomography Criteria and Machine Learning in Multiple Sclerosis and Optic Neuritis Diagnosis. Neurology, 2022, 99, .	1.1	21

#	Article	IF	CITATIONS
127	Transient oscillatory dynamics of interferon beta signaling in macrophages. BMC Systems Biology, 2013, 7, 59.	3.0	20
128	Changes in macular layers in the early course of non-arteritic ischaemic optic neuropathy. Graefe's Archive for Clinical and Experimental Ophthalmology, 2016, 254, 561-567.	1.9	20
129	Retinal and brain damage during multiple sclerosis course: inflammatory activity is a key factor in the first 5 years. Scientific Reports, 2020, 10, 13333.	3.3	20
130	Longitudinal Retinal Changes in <scp>MOGAD</scp> . Annals of Neurology, 2022, 92, 476-485.	5.3	20
131	Reproducibility of the Structural Connectome Reconstruction across Diffusion Methods. Journal of Neuroimaging, 2016, 26, 46-57.	2.0	19
132	Neuroprotective therapies for multiple sclerosis and other demyelinating diseases. Multiple Sclerosis and Demyelinating Disorders, 2016, 1 , .	1,1	19
133	UJA-3DFD: A program to compute the 3D fractal dimension from MRI data. Computer Methods and Programs in Biomedicine, 2011, 104, 452-460.	4.7	18
134	Steady State Detection of Chemical Reaction Networks Using a Simplified Analytical Method. PLoS ONE, 2010, 5, e10823.	2.5	17
135	Using Acute Optic Neuritis Trials to Assess Neuroprotective and Remyelinating Therapies in Multiple Sclerosis. JAMA Neurology, 2020, 77, 234.	9.0	17
136	Impact of treatment on cellular immunophenotype in MS. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	6.0	17
137	Regional grey matter microstructural changes and volume loss according to disease duration in multiple sclerosis patients. Scientific Reports, 2021, 11, 16805.	3. 3	17
138	Multiple Sclerosis and HERV-W/MSRV: A Multicentric Study. International Journal of Biomedical Science, 2007, 3, 292-7.	0.1	17
139	T2 hypointense rims and ring-enhancing lesions in MS. Multiple Sclerosis Journal, 2010, 16, 1317-1325.	3.0	16
140	Biomarkers for multiple sclerosis. Drug News and Perspectives, 2010, 23, 585.	1.5	15
141	Visual field impairment captures disease burden in multiple sclerosis. Journal of Neurology, 2016, 263, 695-702.	3.6	14
142	Association of Multiple Sclerosis Susceptibility Variants and Early Attack Location in the CNS. PLoS ONE, 2013, 8, e75565.	2.5	14
143	A Trifluoromethyl Analogue of Celecoxib Exerts Beneficial Effects in Neuroinflammation. PLoS ONE, 2013, 8, e83119.	2.5	14
144	Serum neurofilament light chain concentration predicts disease worsening in multiple sclerosis. Multiple Sclerosis Journal, 2022, 28, 1859-1870.	3.0	14

#	Article	IF	Citations
145	Differential Neuroprotective Effects of 5′-Deoxy-5′-Methylthioadenosine. PLoS ONE, 2014, 9, e90671.	2.5	13
146	Precision medicine for multiple sclerosis: an update of the available biomarkers and their use in therapeutic decision making. Expert Review of Precision Medicine and Drug Development, 2017, 2, 345-361.	0.7	12
147	Neuroinformatics in clinical practice: are computers going to help neurological patients and their physicians?. Future Neurology, 2006, 1, 159-170.	0.5	11
148	United Europeans for development of pharmacogenomics in multiple sclerosis network. Pharmacogenomics, 2009, 10, 885-894.	1.3	11
149	Retrograde trans-synaptic degeneration in MS. Neurology, 2014, 82, 2152-2153.	1.1	11
150	Prediction of combination therapies based on topological modeling of the immune signaling network in multiple sclerosis. Genome Medicine, 2021, 13, 117.	8.2	10
151	Predicting Relapsing-Remitting Dynamics in Multiple Sclerosis Using Discrete Distribution Models: A Population Approach. PLoS ONE, 2013, 8, e73361.	2.5	10
152	Genetic analysis of SLC11A1 polymorphisms in multiple sclerosis patients. Multiple Sclerosis Journal, 2004, 10, 618-620.	3.0	9
153	Autoimmunity and tumor immunology: two facets of a probabilistic immune system. BMC Systems Biology, 2014, 8, 120.	3.0	9
154	The analysis of semantic networks in multiple sclerosis identifies preferential damage of long-range connectivity. Multiple Sclerosis and Related Disorders, 2015, 4, 387-394.	2.0	9
155	Effects of diazoxide in multiple sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e147.	6.0	8
156	Impairment of decision-making in multiple sclerosis: A neuroeconomic approach. Multiple Sclerosis Journal, 2017, 23, 1762-1771.	3.0	8
157	Remyelination: a good neuroprotective strategy for preventing axonal degeneration?. Brain, 2019, 142, 233-236.	7.6	8
158	Axonal and Myelin Neuroprotection by the Peptoid BN201 in Brain Inflammation. Neurotherapeutics, 2019, 16, 808-827.	4.4	8
159	Oligoclonal IgM bands in the cerebrospinal fluid of patients with relapsing MS to inform long-term MS disability. Multiple Sclerosis Journal, 2021, 27, 1706-1716.	3.0	8
160	Dynamics and Predictors of Cognitive Impairment along the Disease Course in Multiple Sclerosis. Journal of Personalized Medicine, 2021, 11, 1107.	2.5	8
161	Combined walking outcome measures identify clinically meaningful response to prolonged-release fampridine. Therapeutic Advances in Neurological Disorders, 2018, 11, 175628641878000.	3.5	7
162	Optical coherence tomography: A useful tool for identifying subclinical optic neuropathy in diagnosing multiple sclerosis. Neurology, 2020, 95, 239-240.	1.1	7

#	Article	IF	Citations
163	In Vivo Molecular Changes in the Retina of Patients With Multiple Sclerosis. , 2021, 62, 11.		7
164	HLAâ€DR2 and White Matter Lesion Distribution in MS. Journal of Neuroimaging, 2008, 18, 328-331.	2.0	6
165	Viva Europa, a Land of Excellence in Research and Innovation for Health and Wellbeing. Progress in Preventive Medicine (New York, N Y), 2017, 2, e006.	0.7	6
166	Chromosome 7q21–22 and multiple sclerosis. Journal of Neuroimmunology, 2004, 150, 1-2.	2.3	5
167	Closing the Clinical-Radiological Paradox Using the Visual Pathway in Multiple Sclerosis. , 2014, 55, 3765.		5
168	Identification and treatment of the visual processing asymmetry in MS patients with optic neuritis: The Pulfrich phenomenon. Journal of the Neurological Sciences, 2018, 387, 60-69.	0.6	5
169	Burden of neurological diseases in the US revealed by web searches. PLoS ONE, 2017, 12, e0178019.	2.5	5
170	Detection of neuroinflammation through the retina by means of Raman spectroscopy and multivariate analysis. Proceedings of SPIE, 2012 , , .	0.8	4
171	Epicenters of dynamic connectivity in the adaptation of the ventral visual system. Human Brain Mapping, 2017, 38, 1965-1976.	3.6	4
172	Anti-Basal Ganglia Antibodies and Streptococcal Infection in ADHD. Journal of Attention Disorders, 2018, 22, 864-871.	2.6	4
173	Reclassifying neurodegenerative diseases. Nature Biomedical Engineering, 2020, 4, 759-760.	22.5	4
174	Chronic inflammatory diseases of the nervous system. Current Opinion in Neurology, 1998, 11, 235-240.	3.6	4
175	Chromosome 5 and multiple sclerosis. Journal of Neuroimmunology, 2005, 167, 1-3.	2.3	3
176	Intense immunosuppression for the treatment of an immune reconstitution inflammatory syndrome-like exacerbation after natalizumab withdrawal: a case report. Journal of Neurology, 2015, 262, 219-221.	3.6	3
177	Increased expression of dedicator-cytokinesis-10, caspase-2 and Synaptotagmin-like 2 is associated with clinical disease activity in multiple sclerosis. Multiple Sclerosis and Demyelinating Disorders, 2016, 1, .	1.1	3
178	OCT as a window to the MS brain. Neurology, 2017, 89, 2404-2405.	1.1	3
179	The immune signatures of multiple sclerosis: Lessons from twin studies. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24013-24015.	7.1	3
180	Phenytoin for neuroprotection. Lancet Neurology, The, 2016, 15, 901-902.	10.2	2

#	Article	IF	Citations
181	Time is vision: The importance of the early discovery and diagnosis of optic neuritis. Multiple Sclerosis Journal, 2017, 23, 1806-1807.	3.0	2
182	Methylthioadenosine promotes remyelination by inducing oligodendrocyte differentiation. Multiple Sclerosis and Demyelinating Disorders, 2017, 2, .	1.1	2
183	Personalized medicine for multiple sclerosis: How to integrate neurofilament light chain levels in the decision?. Multiple Sclerosis Journal, 2021, 27, 1967-1969.	3.0	2
184	No Evidence of Pancreatic Autoimmunity among Patients with Multiple Sclerosis. Annals of the New York Academy of Sciences, 2004, 1037, 133-137.	3.8	1
185	Systems medicine modeling for multiple sclerosis. Current Opinion in Systems Biology, 2017, 3, 125-131.	2.6	1
186	Seeing the Finish Line. Neurology, 2021, 96, 731-732.	1.1	1
187	Systems Biology for the Study of Multiple Sclerosis. , 2013, , 257-268.		1
188	Inflammatory Disorders of the Nervous System. Archives of Neurology, 2006, 63, 297.	4.5	0
189	Therapeutic Opportunities for Trophic Factors in Brain Inflammation. Current Pharmaceutical Analysis, 2007, 3, 7-15.	0.6	0
190	Using 2D correlation and multivariate analysis combined with plasmonic effects to expand the use of Raman microspectroscopy in biomedical applications. Proceedings of SPIE, 2011, , .	0.8	0
191	Re: Errors in the Editorial by Christensen and Giovannoni [HERVs: have we been here before? MSJ 18(12) 1670–1672]. Multiple Sclerosis Journal, 2013, 19, 831-832.	3.0	0
192	Trans Neuronal Retrograde Degeneration to OCT in Central Nervous System Diseases. , 2016, , 205-214.		0
193	Personalizing medical care for patients with MS. Neurology, 2019, 92, 929-930.	1.1	0
194	Drug Trials in Neuroprotection. , 2016, , 171-184.		0
195	Aquaporin-4–neuromyelitis optica spectrum disorder is not a progressive disease. Journal of Neurology, Neurosurgery and Psychiatry, 2021, , jnnp-2021-327846.	1.9	0
196	Trans Neuronal Retrograde Degeneration to OCT in Central Nervous System Diseases. , 2020, , 365-374.		0