Samuel C. Zipper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6575682/publications.pdf Version: 2024-02-01

SAMILEL C 7IDDED

#	Article	IF	CITATIONS
1	Runoff change induced by vegetation recovery and climate change over carbonate and non-carbonate areas in the karst region of South-west China. Journal of Hydrology, 2022, 604, 127231.	5.4	10
2	Hotspots for social and ecological impacts from freshwater stress and storage loss. Nature Communications, 2022, 13, 439.	12.8	45
3	Advancing environmental flows approaches to streamflow depletion management. Journal of Hydrology, 2022, 607, 127447.	5.4	17
4	Quantifying Streamflow Depletion from Groundwater Pumping: A Practical Review of Past and Emerging Approaches for Water Management. Journal of the American Water Resources Association, 2022, 58, 289-312.	2.4	19
5	Reconceptualizing the hyporheic zone for nonperennial rivers and streams. Freshwater Science, 2022, 41, 167-182.	1.8	15
6	How High to Fly? Mapping Evapotranspiration from Remotely Piloted Aircrafts at Different Elevations. Remote Sensing, 2022, 14, 1660.	4.0	5
7	The Role of Climate in Monthly Baseflow Changes across the Continental United States. Journal of Hydrologic Engineering - ASCE, 2022, 27, .	1.9	9
8	Assessing placement bias of the global river gauge network. Nature Sustainability, 2022, 5, 586-592.	23.7	51
9	Alternative stable states and hydrological regime shifts in a large intermittent river. Environmental Research Letters, 2022, 17, 074005.	5.2	10
10	Quantifying the Impact of Lagged Hydrological Responses on the Effectiveness of Groundwater Conservation. Water Resources Research, 2022, 58, .	4.2	5
11	Spatial Patterns and Drivers of Nonperennial Flow Regimes in the Contiguous United States. Geophysical Research Letters, 2021, 48, e2020GL090794.	4.0	54
12	Comparing Streamflow Depletion Estimation Approaches in a Heavily Stressed, Conjunctively Managed Aquifer. Water Resources Research, 2021, 57, e2020WR027591.	4.2	11
13	The Drying Regimes of Nonâ€Perennial Rivers and Streams. Geophysical Research Letters, 2021, 48, e2021GL093298.	4.0	18
14	Pervasive changes in stream intermittency across the United States. Environmental Research Letters, 2021, 16, 084033.	5.2	47
15	Cannabis farms in California rely on wells outside of regulated groundwater basins. Environmental Research Communications, 2021, 3, 075005.	2.3	2
16	Exploring the relative importance of socio-ecological factors to ecosystem services clusters: a support to spatially targeted management. Environmental Research Letters, 2021, 16, 084053.	5.2	7
17	Too Many Streams and Not Enough Time or Money? Analytical Depletion Functions for Streamflow Depletion Estimates. Ground Water, 2021, , .	1.3	3
18	Significant Baseflow Reduction in the Sao Francisco River Basin. Water (Switzerland), 2021, 13, 2.	2.7	24

SAMUEL C. ZIPPER

#	Article	IF	CITATIONS
19	GMD perspective: The quest to improve the evaluation of groundwater representation in continental- to global-scale models. Geoscientific Model Development, 2021, 14, 7545-7571.	3.6	38
20	The evolution of virtual water flows in China's electricity transmission network and its driving forces. Journal of Cleaner Production, 2020, 242, 118336.	9.3	29
21	Adding our leaves: A communityâ€wide perspective on research directions in ecohydrology. Hydrological Processes, 2020, 34, 1665-1673.	2.6	3
22	Illuminating water cycle modifications and Earth system resilience in the Anthropocene. Water Resources Research, 2020, 56, e2019WR024957.	4.2	86
23	Streamflow depletion from groundwater pumping in contrasting hydrogeological landscapes: Evaluation and sensitivity of a new management tool. Journal of Hydrology, 2020, 590, 125568.	5.4	9
24	A Serious Board Game to Analyze Socio-Ecological Dynamics towards Collaboration in Agriculture. Sustainability, 2020, 12, 5301.	3.2	15
25	The Water Planetary Boundary: Interrogation and Revision. One Earth, 2020, 2, 223-234.	6.8	98
26	Transitions from irrigated to dryland agriculture in the Ogallala Aquifer: Land use suitability and regional economic impacts. Agricultural Water Management, 2020, 233, 106061.	5.6	69
27	Integrating the Water Planetary Boundary With Water Management From Local to Global Scales. Earth's Future, 2020, 8, e2019EF001377.	6.3	65
28	Zero or not? Causes and consequences of zeroâ€flow stream gage readings. Wiley Interdisciplinary Reviews: Water, 2020, 7, e1436.	6.5	63
29	Management of minimum lake levels and impacts on flood mitigation: A case study of the Yahara Watershed, Wisconsin, USA. Journal of Hydrology, 2019, 577, 123920.	5.4	4
30	Comparing the effects of climate and land use on surface water quality using future watershed scenarios. Science of the Total Environment, 2019, 693, 133484.	8.0	20
31	Integrating team science into interdisciplinary graduate education: an exploration of the SESYNC Graduate Pursuit. Journal of Environmental Studies and Sciences, 2019, 9, 218-233.	2.0	11
32	Balancing Open Science and Data Privacy in the Water Sciences. Water Resources Research, 2019, 55, 5202-5211.	4.2	40
33	Rapid and Accurate Estimates of Streamflow Depletion Caused by Groundwater Pumping Using Analytical Depletion Functions. Water Resources Research, 2019, 55, 5807-5829.	4.2	29
34	Nonlinear groundwater influence on biophysical indicators of ecosystem services. Nature Sustainability, 2019, 2, 475-483.	23.7	42
35	Land use change impacts on European heat and drought: remote land-atmosphere feedbacks mitigated locally by shallow groundwater. Environmental Research Letters, 2019, 14, 044012.	5.2	24
36	Combining Evapotranspiration and Soil Apparent Electrical Conductivity Mapping to Identify Potential Precision Irrigation Benefits. Remote Sensing, 2019, 11, 2460.	4.0	9

SAMUEL C. ZIPPER

#	Article	IF	CITATIONS
37	Cannabis and residential groundwater pumping impacts on streamflow and ecosystems in Northern California. Environmental Research Communications, 2019, 1, 125005.	2.3	20
38	Sociohydrological Impacts of Water Conservation Under Anthropogenic Drought in Austin, TX (USA). Water Resources Research, 2018, 54, 3062-3080.	4.2	33
39	Understanding relationships among ecosystem services across spatial scales and over time. Environmental Research Letters, 2018, 13, 054020.	5.2	76
40	Does hillslope trenching enhance groundwater recharge and baseflow in the <scp>Peruvian Andes</scp> ?. Hydrological Processes, 2018, 32, 318-331.	2.6	26
41	Agricultural Research Using Social Media Data. Agronomy Journal, 2018, 110, 349-358.	1.8	18
42	Scenarios reveal pathways to sustain future ecosystem services in an agricultural landscape. Ecological Applications, 2018, 28, 119-134.	3.8	34
43	Groundwater Controls on Postfire Permafrost Thaw: Water and Energy Balance Effects. Journal of Geophysical Research F: Earth Surface, 2018, 123, 2677-2694.	2.8	26
44	Groundwater Pumping Impacts on Real Stream Networks: Testing the Performance of Simple Management Tools. Water Resources Research, 2018, 54, 5471-5486.	4.2	26
45	The synergistic effect of manure supply and extreme precipitation on surface water quality. Environmental Research Letters, 2018, 13, 044016.	5.2	32
46	Changing groundwater discharge dynamics in permafrost regions. Environmental Research Letters, 2018, 13, 084017.	5.2	101
47	Continuous separation of land use and climate effects on the past and future water balance. Journal of Hydrology, 2018, 565, 106-122.	5.4	30
48	Urban heat islandâ€induced increases in evapotranspirative demand. Geophysical Research Letters, 2017, 44, 873-881.	4.0	65
49	The Influence of Legacy P on Lake Water Quality in a Midwestern Agricultural Watershed. Ecosystems, 2017, 20, 1468-1482.	3.4	60
50	Quantifying indirect groundwater-mediated effects of urbanization on agroecosystem productivity using MODFLOW-AgroIBIS (MAGI), a complete critical zone model. Ecological Modelling, 2017, 359, 201-219.	2.5	34
51	Socio-environmental drought response in a mixed urban-agricultural setting: synthesizing biophysical and governance responses in the Platte River Watershed, Nebraska, USA. Ecology and Society, 2017, 22, .	2.3	14
52	Arctic Deltaic Lake Sediments As Recorders of Fluvial Organic Matter Deposition. Frontiers in Earth Science, 2016, 4, .	1.8	12
53	How Universal Is the Relationship between Remotely Sensed Vegetation Indices and Crop Leaf Area Index? A Global Assessment. Remote Sensing, 2016, 8, 597.	4.0	91
54	Urban heat island impacts on plant phenology: intra-urban variability and response to land cover. Environmental Research Letters, 2016, 11, 054023.	5.2	148

SAMUEL C. ZIPPER

#	Article	IF	CITATIONS
55	Wicked but worth it: student perspectives on socioâ€hydrology. Hydrological Processes, 2016, 30, 1467-1472.	2.6	17
56	Drought effects on US maize and soybean production: spatiotemporal patterns and historical changes. Environmental Research Letters, 2016, 11, 094021.	5.2	212
57	From qualitative to quantitative environmental scenarios: Translating storylines into biophysical modeling inputs at the watershed scale. Environmental Modelling and Software, 2016, 85, 80-97.	4.5	44
58	Is groundwater recharge always serving us well? Water supply provisioning, crop production, and flood attenuation in conflict in Wisconsin, USA. Ecosystem Services, 2016, 21, 153-165.	5.4	25
59	From channelization to restoration: Sociohydrologic modeling with changing community preferences in the <scp>K</scp> issimmee <scp>R</scp> iver <scp>B</scp> asin, <scp>F</scp> lorida. Water Resources Research, 2016, 52, 1227-1244.	4.2	59
60	Untangling the effects of shallow groundwater and soil texture as drivers of subfieldâ€scale yield variability. Water Resources Research, 2015, 51, 6338-6358.	4.2	91
61	Using evapotranspiration to assess drought sensitivity on a subfield scale with HRMET, a high resolution surface energy balance model. Agricultural and Forest Meteorology, 2014, 197, 91-102.	4.8	39