Kevin S Weiner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6575186/publications.pdf Version: 2024-02-01

KEVIN S WEINED

#	Article	IF	CITATIONS
1	The functional architecture of the ventral temporal cortex and its role in categorization. Nature Reviews Neuroscience, 2014, 15, 536-548.	10.2	656
2	Electrical Stimulation of Human Fusiform Face-Selective Regions Distorts Face Perception. Journal of Neuroscience, 2012, 32, 14915-14920.	3.6	327
3	Neural Representations of Faces and Body Parts in Macaque and Human Cortex: A Comparative fMRI Study. Journal of Neurophysiology, 2009, 101, 2581-2600.	1.8	299
4	The anatomical and functional specialization of the fusiform gyrus. Neuropsychologia, 2016, 83, 48-62.	1.6	268
5	Sparsely-distributed organization of face and limb activations in human ventral temporal cortex. Neurolmage, 2010, 52, 1559-1573.	4.2	262
6	Apparent thinning of human visual cortex during childhood is associated with myelination. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20750-20759.	7.1	231
7	The vertical occipital fasciculus: A century of controversy resolved by in vivo measurements. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5214-23.	7.1	221
8	The mid-fusiform sulcus: A landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex. NeuroImage, 2014, 84, 453-465.	4.2	212
9	Topographic Maps in Human Frontal Cortex Revealed in Memory-Guided Saccade and Spatial Working-Memory Tasks. Journal of Neurophysiology, 2007, 97, 3494-3507.	1.8	187
10	The Functional Neuroanatomy of Human Face Perception. Annual Review of Vision Science, 2017, 3, 167-196.	4.4	186
11	Attention Reduces Spatial Uncertainty in Human Ventral Temporal Cortex. Current Biology, 2015, 25, 595-600.	3.9	185
12	Neural representations of faces and limbs neighbor in human high-level visual cortex: evidence for a new organization principle. Psychological Research, 2013, 77, 74-97.	1.7	182
13	Electrical Stimulation of the Left and Right Human Fusiform Gyrus Causes Different Effects in Conscious Face Perception. Journal of Neuroscience, 2014, 34, 12828-12836.	3.6	177
14	Functional Heterogeneity in Posterior Parietal Cortex Across Attention and Episodic Memory Retrieval. Cerebral Cortex, 2014, 24, 49-66.	2.9	158
15	Temporal Processing Capacity in High-Level Visual Cortex Is Domain Specific. Journal of Neuroscience, 2015, 35, 12412-12424.	3.6	152
16	Microstructural proliferation in human cortex is coupled with the development of face processing. Science, 2017, 355, 68-71.	12.6	150
17	Not one extrastriate body area: Using anatomical landmarks, hMT+, and visual field maps to parcellate limb-selective activations in human lateral occipitotemporal cortex. NeuroImage, 2011, 56, 2183-2199.	4.2	147
18	fMRI-Adaptation and Category Selectivity in Human Ventral Temporal Cortex: Regional Differences Across Time Scales. Journal of Neurophysiology, 2010, 103, 3349-3365.	1.8	146

KEVIN S WEINER

#	Article	IF	CITATIONS
19	The improbable simplicity of the fusiform face area. Trends in Cognitive Sciences, 2012, 16, 251-254.	7.8	134
20	Corresponding ECoG and fMRI category-selective signals in human ventral temporal cortex. Neuropsychologia, 2016, 83, 14-28.	1.6	105
21	The Cytoarchitecture of Domain-specific Regions in Human High-level Visual Cortex. Cerebral Cortex, 2017, 27, 146-161.	2.9	94
22	Two New Cytoarchitectonic Areas on the Human Mid-Fusiform Gyrus. Cerebral Cortex, 2017, 27, bhv225.	2.9	91
23	Occipital White Matter Tracts in Human and Macaque. Cerebral Cortex, 2017, 27, 3346-3359.	2.9	73
24	Defining the most probable location of the parahippocampal place area using cortex-based alignment and cross-validation. NeuroImage, 2018, 170, 373-384.	4.2	71
25	The posterior arcuate fasciculus and the vertical occipital fasciculus. Cortex, 2017, 97, 274-276.	2.4	70
26	A cross-validated cytoarchitectonic atlas of the human ventral visual stream. NeuroImage, 2018, 170, 257-270.	4.2	63
27	The functional neuroanatomy of face perception: from brain measurements to deep neural networks. Interface Focus, 2018, 8, 20180013.	3.0	58
28	Task alters category representations in prefrontal but not high-level visual cortex. NeuroImage, 2017, 155, 437-449.	4.2	55
29	Overlooked Tertiary Sulci Serve as a Meso-Scale Link between Microstructural and Functional Properties of Human Lateral Prefrontal Cortex. Journal of Neuroscience, 2021, 41, 2229-2244.	3.6	53
30	The Face-Processing Network Is Resilient to Focal Resection of Human Visual Cortex. Journal of Neuroscience, 2016, 36, 8425-8440.	3.6	49
31	On object selectivity and the anatomy of the human fusiform gyrus. NeuroImage, 2018, 173, 604-609.	4.2	49
32	The evolution of face processing networks. Trends in Cognitive Sciences, 2015, 19, 240-241.	7.8	48
33	The Midâ€Fusiform Sulcus (<i>sulcus sagittalis gyri fusiformis</i>). Anatomical Record, 2019, 302, 1491-1503.	1.4	39
34	Cognitive insights from tertiary sulci in prefrontal cortex. Nature Communications, 2021, 12, 5122.	12.8	38
35	Human visual cortex is organized along two genetically opposed hierarchical gradients with unique developmental and evolutionary origins. PLoS Biology, 2019, 17, e3000362.	5.6	30
36	Sulcal morphology of ventral temporal cortex is shared between humans and other hominoids. Scientific Reports, 2020, 10, 17132.	3.3	29

KEVIN S WEINER

#	Article	IF	CITATIONS
37	Ultra-high-resolution fMRI of Human Ventral Temporal Cortex Reveals Differential Representation of Categories and Domains. Journal of Neuroscience, 2020, 40, 3008-3024.	3.6	28
38	Sulcal Depth in the Medial Ventral Temporal Cortex Predicts the Location of a Place-Selective Region in Macaques, Children, and Adults. Cerebral Cortex, 2021, 31, 48-61.	2.9	24
39	Labeling lateral prefrontal sulci using spherical data augmentation and context-aware training. NeuroImage, 2021, 229, 117758.	4.2	19
40	Using Tertiary Sulci to Map the "Cognitive Globe―of Prefrontal Cortex. Journal of Cognitive Neuroscience, 2021, 33, 1698-1715.	2.3	19
41	Sulcal depth in prefrontal cortex: a novel predictor of working memory performance. Cerebral Cortex, 2023, 33, 1799-1813.	2.9	19
42	Illusions of Visual Motion Elicited by Electrical Stimulation of Human MT Complex. PLoS ONE, 2011, 6, e21798.	2.5	17
43	Comparative neuroanatomy: Integrating classic and modern methods to understand association fibers connecting dorsal and ventral visual cortex. Neuroscience Research, 2019, 146, 1-12.	1.9	16
44	Diverse Temporal Dynamics of Repetition Suppression Revealed by Intracranial Recordings in the Human Ventral Temporal Cortex. Cerebral Cortex, 2020, 30, 5988-6003.	2.9	9
45	Third Visual Pathway, Anatomy, and Cognition across Species. Trends in Cognitive Sciences, 2021, 25, 548-549.	7.8	9
46	The relationship between transcription and eccentricity in human V1. Brain Structure and Function, 2021, 226, 2807-2818.	2.3	8
47	Automatic Labeling of Cortical Sulci Using Spherical Convolutional Neural Networks in a Developmental Cohort. , 2020, 2020, 412-415.		6
48	Data on a cytoarchitectonic brain atlas: effects of brain template and a comparison to a multimodal atlas. Data in Brief, 2017, 12, 327-332.	1.0	5
49	The Functional Neuroanatomy of Face Processing: Insights from Neuroimaging and Implications for Deep Learning. Advances in Computer Vision and Pattern Recognition, 2017, , 3-31.	1.3	5
50	On (ab)normality: Einstein's fusiform gyrus. Brain and Cognition, 2015, 94, 1-3.	1.8	4
51	Area TEO and "AreaÂ?â€ı cytoarchitectonic confusion corrected by connectivity and cortical ablation. Brain Structure and Function, 2018, 223, 3515-3529.	2.3	4
52	Synchrony upon repetition: One or multiple neural mechanisms?. Cognitive Neuroscience, 2012, 3, 243-244.	1.4	3
53	Neuronomy, education, and outreach in neuroscience: A historical case study of Burt Green Wilder. Journal of the History of the Neurosciences, 2019, 28, 42-63.	0.9	3
54	Combined Neural Tuning in Human Ventral Temporal Cortex Resolves the Perceptual Ambiguity of Morphed 2D Images. Cerebral Cortex, 2020, 30, 4882-4898.	2.9	2

KEVIN S WEINER

#	Article	IF	CITATIONS
55	Gray Matter Thinning in Ventral Temporal Cortex from Childhood to Adulthood is Associated with Increased Myelination. Journal of Vision, 2018, 18, 542.	0.3	2
56	Human visual cortex as a window into the developing brain. Journal of Vision, 2019, 19, 17.	0.3	2
57	Two brains and a forgotten theory. Nature, 2014, 509, 33-33.	27.8	1
58	Task modulates category selectivity along a gradient from occipitotemporal cortex to prefrontal cortex in word- and face-selective regions. Journal of Vision, 2015, 15, 1170.	0.3	1
59	Differential representation of category and task information across high level visual cortex and ventro-lateral prefrontal cortex. Journal of Vision, 2016, 16, 256.	0.3	1
60	Macroanatomical alignment improves the intersubject consistency of cytoarchitectonic regions in the human ventral stream. Journal of Vision, 2016, 16, 179.	0.3	1
61	The retrocalcarine sulcus maps different retinotopic representations in macaques and humans. Brain Structure and Function, 2021, , 1.	2.3	1
62	Near-perfect prediction of reaction time for face gender judgments based on activity in ventral temporal cortex. Journal of Vision, 2015, 15, 753.	0.3	0
63	The human face processing network is resilient after resection of specialized cortical inputs. Journal of Vision, 2015, 15, 1411.	0.3	0
64	Macromolecular proliferation in human high-level visual cortex constrains development of function and behavior. Journal of Vision, 2016, 16, 383.	0.3	0
65	Probabilistic Atlas of Category-Selective Regions of Ventral Temporal Cortex. Journal of Vision, 2016, 16, 253.	0.3	0
66	Comparative neuroanatomy of occipital white matter tracts in human and macaque. Journal of Vision, 2017, 17, 589.	0.3	0
67	Differential responses across body- and face-selective cortex predict visual categorization behavior. Journal of Vision, 2018, 18, 1091.	0.3	0
68	Ultra-high-resolution fMRI reveals differential representation of categories and domains across lateral and medial ventral temporal cortex. Journal of Vision, 2019, 19, 249a.	0.3	0
69	Opposed transcriptomic gradients contribute to both the arealization of human visual cortex and the topological layout of its orthogonal maps. Journal of Vision, 2020, 20, 343.	0.3	0

5