Seung Kwon Seol

List of Publications by Citations

Source: https://exaly.com/author-pdf/6574668/seung-kwon-seol-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

30 868 15 29 g-index

34 1,026 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
30	3D printing of reduced graphene oxide nanowires. <i>Advanced Materials</i> , 2015 , 27, 157-61	24	188
29	Three-Dimensional Printing of Highly Conductive Carbon Nanotube Microarchitectures with Fluid Ink. <i>ACS Nano</i> , 2016 , 10, 8879-87	16.7	91
28	Electrodeposition-based 3D Printing of Metallic Microarchitectures with Controlled Internal Structures. <i>Small</i> , 2015 , 11, 3896-902	11	80
27	Three-dimensional writing of conducting polymer nanowire arrays by meniscus-guided polymerization. <i>Advanced Materials</i> , 2011 , 23, 1968-70	24	78
26	Microwave synthesis of gold nanoparticles: Effect of applied microwave power and solution pH. <i>Materials Chemistry and Physics</i> , 2011 , 131, 331-335	4.4	45
25	Flexible Strain Sensors Fabricated by Meniscus-Guided Printing of Carbon Nanotube-Polymer Composites. <i>ACS Applied Materials & Acs Applied & Acs</i>	9.5	44
24	3D Nanoprinting of Perovskites. <i>Advanced Materials</i> , 2019 , 31, e1904073	24	37
23	Three-dimensional Printing of Silver Microarchitectures Using Newtonian Nanoparticle Inks. <i>ACS Applied Materials & District Research</i> , 2017, 9, 18918-18924	9.5	36
22	Electroless Deposition-Assisted 3D Printing of Micro Circuitries for Structural Electronics. <i>ACS Applied Materials & Deposition (Company)</i> , 11, 7123-7130	9.5	31
21	3D printing of Fe3O4 functionalized graphene-polymer (FGP) composite microarchitectures. <i>Carbon</i> , 2020 , 167, 278-284	10.4	28
20	Meniscus-on-Demand Parallel 3D Nanoprinting. ACS Nano, 2018, 12, 4172-4177	16.7	28
19	Individually Addressable Suspended Conducting-Polymer Wires in a Chemiresistive Gas Sensor. <i>Macromolecular Chemistry and Physics</i> , 2014 , 215, 1633-1638	2.6	20
18	Metals by Micro-Scale Additive Manufacturing: Comparison of Microstructure and Mechanical Properties. <i>Advanced Functional Materials</i> , 2020 , 30, 1910491	15.6	20
17	Rearrangement of 1D conducting nanomaterials towards highly electrically conducting nanocomposite fibres for electronic textiles. <i>Scientific Reports</i> , 2015 , 5, 9300	4.9	19
16	Self-passivation of transparent single-walled carbon nanotube films on plastic substrates by microwave-induced rapid nanowelding. <i>Applied Physics Letters</i> , 2012 , 100, 163120	3.4	18
15	3D-Printed Quantum Dot Nanopixels. ACS Nano, 2020, 14, 10993-11001	16.7	15
14	Micropatterning of reduced graphene oxide by meniscus-guided printing. <i>Carbon</i> , 2017 , 123, 364-370	10.4	14

LIST OF PUBLICATIONS

13	Carbon nanotube-conducting polymer composite wires formed by fountain pen growth (FPG) route. <i>RSC Advances</i> , 2012 , 2, 8926	3.7	13
12	Conductivity enhancement of stretchable PEDOT:PSS nanowire interconnect fabricated by fountain-pen lithography. <i>Materials Chemistry and Physics</i> , 2014 , 147, 1171-1174	4.4	11
11	Effect of citrate on poly(vinyl pyrrolidone)-stabilized gold nanoparticles formed by PVP reduction in microwave (MW) synthesis. <i>Materials Chemistry and Physics</i> , 2012 , 137, 135-139	4.4	11
10	3D printing of highly conductive silver architectures enabled to sinter at low temperatures. <i>Nanoscale</i> , 2019 , 11, 17682-17688	7.7	10
9	Three-Dimensional Perovskite Nanopixels for Ultrahigh-Resolution Color Displays and Multilevel Anticounterfeiting. <i>Nano Letters</i> , 2021 , 21, 5186-5194	11.5	10
8	A 3D integrated neuromorphic chemical sensing system. <i>Sensors and Actuators B: Chemical</i> , 2021 , 332, 129527	8.5	6
7	3D-printed NiFe-layered double hydroxide pyramid electrodes for enhanced electrocatalytic oxygen evolution reaction <i>Scientific Reports</i> , 2022 , 12, 346	4.9	5
6	Precise Placement of Microbubble Templates at Single Entity Resolution. <i>ACS Macro Letters</i> , 2018 , 7, 1267-1271	6.6	5
5	3D-printed Cu2O photoelectrodes for photoelectrochemical water splitting. <i>Nanoscale Advances</i> , 2020 , 2, 5600-5606	5.1	3
4	Air-Pressure-Assisted Pen-Nib Printing for 3D Printed Electronics. <i>Advanced Materials Technologies</i> ,210	16,782	1
3	3D Printing: Electrodeposition-based 3D Printing of Metallic Microarchitectures with Controlled Internal Structures (Small 32/2015). <i>Small</i> , 2015 , 11, 4028-4028	11	
2	Polymer Nanowire Writing: Three-Dimensional Writing of Conducting Polymer Nanowire Arrays by Meniscus-Guided Polymerization (Adv. Mater. 17/2011). <i>Advanced Materials</i> , 2011 , 23, 1916-1916	24	
1	Nanoscale 3D Printing of Quantum Dots on Paper. <i>Advanced Engineering Materials</i> , 2021 , 23, 2100339	3.5	