Isabel M Marrucho

List of Publications by Citations

Source: https://exaly.com/author-pdf/6574546/isabel-m-marrucho-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

17,289 258 73 121 h-index g-index citations papers 268 6.9 19,045 5.2 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
258	Aqueous biphasic systems: a boost brought about by using ionic liquids. <i>Chemical Society Reviews</i> , 2012 , 41, 4966-95	58.5	610
257	Hydrolysis of tetrafluoroborate and hexafluorophosphate counter ions in imidazolium-based ionic liquids. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 3744-9	2.8	475
256	Insights into the Synthesis and Properties of Deep Eutectic Solvents Based on Cholinium Chloride and Carboxylic Acids. <i>ACS Sustainable Chemistry and Engineering</i> , 2014 , 2, 2416-2425	8.3	391
255	Surface tensions of imidazolium based ionic liquids: anion, cation, temperature and water effect. Journal of Colloid and Interface Science, 2007, 314, 621-30	9.3	369
254	Ionic liquids in separations of azeotropic systems 🖪 review. <i>Journal of Chemical Thermodynamics</i> , 2012 , 46, 2-28	2.9	359
253	High-Pressure Densities and Derived Thermodynamic Properties of Imidazolium-Based Ionic Liquids. <i>Journal of Chemical & Engineering Data</i> , 2007 , 52, 80-88	2.8	357
252	Mutual solubilities of water and hydrophobic ionic liquids. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 13082-9	3.4	347
251	Mutual solubilities of water and the [C(n)mim][Tf(2)N] hydrophobic ionic liquids. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 1604-10	3.4	289
250	Ionic liquids: first direct determination of their cohesive energy. <i>Journal of the American Chemical Society</i> , 2007 , 129, 284-5	16.4	278
249	Ionic liquid-based materials: a platform to design engineered CO2 separation membranes. <i>Chemical Society Reviews</i> , 2016 , 45, 2785-824	58.5	271
248	Ionic liquids in pharmaceutical applications. <i>Annual Review of Chemical and Biomolecular Engineering</i> , 2014 , 5, 527-46	8.9	269
247	An overview of the mutual solubilities of waterlimidazolium-based ionic liquids systems. <i>Fluid Phase Equilibria</i> , 2007 , 261, 449-454	2.5	265
246	Evaluation of anion influence on the formation and extraction capacity of ionic-liquid-based aqueous biphasic systems. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 9304-10	3.4	264
245	Menthol-based Eutectic Mixtures: Hydrophobic Low Viscosity Solvents. <i>ACS Sustainable Chemistry and Engineering</i> , 2015 , 3, 2469-2477	8.3	261
244	PII Measurements of Imidazolium-Based Ionic Liquids. <i>Journal of Chemical & Data</i> , 2007, 52, 1881-1888	2.8	257
243	Evaluation of cation influence on the formation and extraction capability of ionic-liquid-based aqueous biphasic systems. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 5194-9	3.4	221
242	Densities and Derived Thermodynamic Properties of Imidazolium-, Pyridinium-, Pyrrolidinium-, and Piperidinium-Based Ionic Liquids. <i>Journal of Chemical & Description</i> (2008), 53, 805-811	2.8	216

(2008-2017)

241	Development of hydrophobic deep eutectic solvents for extraction of pesticides from aqueous environments. <i>Fluid Phase Equilibria</i> , 2017 , 448, 135-142	2.5	206	
240	Evaluation of cation-anion interaction strength in ionic liquids. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 4033-41	3.4	197	
239	High-performance extraction of alkaloids using aqueous two-phase systems with ionic liquids. <i>Green Chemistry</i> , 2010 , 12, 1715	10	194	
238	Viscosity of (C2II14) 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ionic liquids in an extended temperature range. <i>Fluid Phase Equilibria</i> , 2011 , 301, 22-32	2.5	191	
237	Specific solvation interactions of CO2 on acetate and trifluoroacetate imidazolium based ionic liquids at high pressures. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 6803-12	3.4	186	
236	Surface Tensions for the 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquids. <i>Journal of Chemical & amp; Engineering Data</i> , 2008 , 53, 1346-1350	2.8	186	
235	High-accuracy vapor pressure data of the extended [C(n)C1im][Ntf2] ionic liquid series: trend changes and structural shifts. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 10919-26	3.4	182	
234	Ion specific effects on the mutual solubilities of water and hydrophobic ionic liquids. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 202-11	3.4	168	
233	Extraction of biomolecules using phosphonium-based ionic liquids + K(3)PO(4) aqueous biphasic systems. <i>International Journal of Molecular Sciences</i> , 2010 , 11, 1777-91	6.3	165	
232	From Phase Change Materials to Green Solvents: Hydrophobic Low Viscous Fatty Acid B ased Deep Eutectic Solvents. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 3888-3895	8.3	163	
231	Systematic study of the thermophysical properties of imidazolium-based ionic liquids with cyano-functionalized anions. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 10271-83	3.4	153	
230	High pressure phase behavior of carbon dioxide in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and 1-butyl-3-methylimidazolium dicyanamide ionic liquids. <i>Journal of Supercritical Fluids</i> , 2009 , 50, 105-111	4.2	149	
229	High carbon dioxide solubilities in trihexyltetradecylphosphonium-based ionic liquids. <i>Journal of Supercritical Fluids</i> , 2010 , 52, 258-265	4.2	138	
228	Quest for Green-Solvent Design: From Hydrophilic to Hydrophobic (Deep) Eutectic Solvents. <i>ChemSusChem</i> , 2019 , 12, 1549-1559	8.3	138	
227	Pyrrolidinium-based polymeric ionic liquid materials: New perspectives for CO2 separation membranes. <i>Journal of Membrane Science</i> , 2013 , 428, 260-266	9.6	136	
226	Evaluation of COSMO-RS for the prediction of LLE and VLE of water and ionic liquids binary systems. <i>Fluid Phase Equilibria</i> , 2008 , 268, 74-84	2.5	127	
225	Production and characterization of a bioemulsifier from Yarrowia lipolytica. <i>Process Biochemistry</i> , 2006 , 41, 1894-1898	4.8	125	
224	Measurements and Correlation of High-Pressure Densities of Imidazolium-Based Ionic Liquids. Journal of Chemical & Densities of Imidazolium-Based Ionic Liquids.	2.8	123	

223	Fluorinated Ionic Liquids: Properties and Applications. <i>ACS Sustainable Chemistry and Engineering</i> , 2013 , 1, 427-439	8.3	122
222	(Extraction of biomolecules using) aqueous biphasic systems formed by ionic liquids and aminoacids. <i>Separation and Purification Technology</i> , 2010 , 72, 85-91	8.3	122
221	Aqueous biphasic systems: a benign route using cholinium-based ionic liquids. <i>RSC Advances</i> , 2013 , 3, 1835-1843	3.7	121
220	High pressure phase behavior of carbon dioxide in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids. <i>Journal of Supercritical Fluids</i> , 2009 , 48, 99-107	4.2	121
219	Surface Tension of Heptane, Decane, Hexadecane, Eicosane, and Some of Their Binary Mixtures. Journal of Chemical & Engineering Data, 2002, 47, 1442-1445	2.8	121
218	Evaluation of COSMO-RS for the prediction of LLE and VLE of alcohols+ionic liquids. <i>Fluid Phase Equilibria</i> , 2007 , 255, 167-178	2.5	118
217	Extraction of l-lactic, l-malic, and succinic acids using phosphonium-based ionic liquids. <i>Separation and Purification Technology</i> , 2012 , 85, 137-146	8.3	112
216	Ionic liquid-based aqueous biphasic system for lipase extraction. <i>Green Chemistry</i> , 2011 , 13, 390-396	10	111
215	Tryptophan extraction using hydrophobic ionic liquids. <i>Separation and Purification Technology</i> , 2010 , 72, 167-173	8.3	111
214	Protein-based materials: from sources to innovative sustainable materials for biomedical applications. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 3715-3740	7.3	109
213	Deep eutectic solvents as extraction media for azeotropic mixtures. <i>Green Chemistry</i> , 2013 , 15, 1326	10	109
212	1H NMR and molecular dynamics evidence for an unexpected interaction on the origin of salting-in/salting-out phenomena. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 2004-14	3.4	109
211	Structural and Positional Isomerism Influence in the Physical Properties of Pyridinium NTf2-Based Ionic Liquids: Pure and Water-Saturated Mixtures <i>Journal of Chemical & Data</i> , 2010, 55, 4514-4520	2.8	104
210	Prediction of aqueous solubilities of solid carboxylic acids with COSMO-RS. <i>Fluid Phase Equilibria</i> , 2010 , 289, 140-147	2.5	102
209	Solubility of Water in Tetradecyltrihexylphosphonium-Based Ionic Liquids. <i>Journal of Chemical & Engineering Data</i> , 2008 , 53, 2378-2382	2.8	101
208	Vaporlliquid Equilibrium of Carbon Dioxide B erfluoroalkane Mixtures: Experimental Data and SAFT Modeling. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 2341-2350	3.9	95
207	Salting-out effects in aqueous ionic liquid solutions: cloud-point temperature shifts. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 4737-41	3.4	92
206	Deep eutectic solvents: overcoming 21st century challenges. <i>Current Opinion in Green and Sustainable Chemistry</i> , 2019 , 18, 31-36	7.9	91

(2008-2011)

205	Densities and Viscosities of 1-Ethyl-3-methylimidazolium n-Alkyl Sulfates. <i>Journal of Chemical & Data</i> , 2011 , 56, 3433-3441	2.8	86	
204	Densities and Viscosities of Mixtures of Two Ionic Liquids Containing a Common Cation. <i>Journal of Chemical & </i>	2.8	85	
203	On the formation of a third, nanostructured domain in ionic liquids. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 10826-33	3.4	84	
202	Development of novel ionic liquids based on ampicillin. <i>MedChemComm</i> , 2012 , 3, 494	5	83	
201	Inorganic salts in purely ionic liquid media: the development of High Ionicity Ionic Liquids (HIILs). <i>Chemical Communications</i> , 2012 , 48, 3656-8	5.8	82	
200	Deep Eutectic Solvents as Azeotrope Breakers: Liquid Liquid Extraction and COSMO-RS Prediction. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 5640-5650	8.3	82	
199	Polymeric ionic liquid-based membranes: Influence of polycation variation on gas transport and CO2 selectivity properties. <i>Journal of Membrane Science</i> , 2015 , 486, 40-48	9.6	81	
198	Pullulan-based nanocomposite films for functional food packaging: Exploiting lysozyme nanofibers as antibacterial and antioxidant reinforcing additives. <i>Food Hydrocolloids</i> , 2018 , 77, 921-930	10.6	81	
197	CO2 separation applying ionic liquid mixtures: the effect of mixing different anions on gas permeation through supported ionic liquid membranes. <i>RSC Advances</i> , 2013 , 3, 12220	3.7	80	
196	Solubility of Antibiotics in Different Solvents. 1. Hydrochloride Forms of Tetracycline, Moxifloxacin, and Ciprofloxacin. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 6368-6374	3.9	79	
195	Surface tension of chain molecules through a combination of the gradient theory with the CPA EoS. <i>Fluid Phase Equilibria</i> , 2008 , 267, 83-91	2.5	78	
194	Prediction of Cloud Points of Biodiesel. <i>Energy & Energy & Energy</i>	4.1	77	
193	Towards an understanding of the mutual solubilities of water and hydrophobic ionic liquids in the presence of salts: the anion effect. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 2815-25	3.4	76	
192	Viscosity and Liquid Density of Asymmetric Hydrocarbon Mixtures. <i>International Journal of Thermophysics</i> , 2003 , 24, 1221-1239	2.1	76	
191	Density, thermal expansion and viscosity of cholinium-derived ionic liquids. <i>ChemPhysChem</i> , 2012 , 13, 1902-9	3.2	75	
190	Solubility of oxygen in liquid perfluorocarbons. Fluid Phase Equilibria, 2004, 222-223, 325-330	2.5	75	
189	A closer look into deep eutectic solvents: exploring intermolecular interactions using solvatochromic probes. <i>Physical Chemistry Chemical Physics</i> , 2017 , 20, 206-213	3.6	75	
188	High pressure solubility data of carbon dioxide in (tri-iso-butyl(methyl)phosphonium tosylate + water) systems. <i>Journal of Chemical Thermodynamics</i> , 2008 , 40, 1187-1192	2.9	74	

187	Solubility of non-aromatic ionic liquids in water and correlation using a QSPR approach. <i>Fluid Phase Equilibria</i> , 2010 , 294, 234-240	2.5	73
186	Prediction of Water Solubility in Biodiesel with the CPA Equation of State. <i>Industrial & amp; Engineering Chemistry Research</i> , 2008 , 47, 4278-4285	3.9	73
185	Novel pyrrolidinium-based polymeric ionic liquids with cyano counter-anions: High performance membrane materials for post-combustion CO2 separation. <i>Journal of Membrane Science</i> , 2015 , 483, 155	;-9:65	72
184	Evaluation of solubility and partition properties of ampicillin-based ionic liquids. <i>International Journal of Pharmaceutics</i> , 2013 , 456, 553-9	6.5	72
183	Preparation and characterization of bacterial cellulose membranes with tailored surface and barrier properties. <i>Cellulose</i> , 2010 , 17, 1203-1211	5.5	72
182	Solubility of oxygen in n-hexane and in n-perfluorohexane. Experimental determination and prediction by molecular simulation. <i>Physical Chemistry Chemical Physics</i> , 2003 , 5, 543-549	3.6	72
181	Viscosity and Liquid Density of Asymmetric n-Alkane Mixtures: Measurement and Modeling. <i>International Journal of Thermophysics</i> , 2005 , 26, 47-61	2.1	72
180	Cholinium-based ionic liquids with pharmaceutically active anions. <i>RSC Advances</i> , 2014 , 4, 28126-28132	3.7	71
179	Thermophysical Properties and Water Saturation of [PF6]-Based Ionic Liquids. <i>Journal of Chemical & Engineering Data</i> , 2010 , 55, 5065-5073	2.8	70
178	Investigation of polymer electrolyte based on agar and ionic liquids. <i>EXPRESS Polymer Letters</i> , 2012 , 6, 1007-1016	3.4	70
177	Mutual solubility of water and structural/positional isomers of N-alkylpyridinium-based ionic liquids. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 15925-34	3.4	69
176	Turning into poly(ionic liquid)s as a tool for polyimide modification: synthesis, characterization and CO2 separation properties. <i>Polymer Chemistry</i> , 2016 , 7, 580-591	4.9	68
175	SAFT Modeling of the Solubility of Gases in Perfluoroalkanes. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 1450-1457	3.4	68
174	Solubility of Antibiotics in Different Solvents. Part II. Non-Hydrochloride Forms of Tetracycline and Ciprofloxacin. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 8083-8089	3.9	67
173	Towards a sulfur clean fuel: Deep extraction of thiophene and dibenzothiophene using polyethylene glycol-based deep eutectic solvents. <i>Fuel</i> , 2018 , 234, 414-421	7.1	66
172	Polymeric ionic liquid membranes containing ILAg+ for ethylene/ethane separation via olefin-facilitated transport. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 5631	13	65
171	Applications of supercritical CO2 extraction to microalgae and plants. <i>Journal of Chemical Technology and Biotechnology</i> , 1995 , 62, 53-59	3.5	64
170	Playing with ionic liquid mixtures to design engineered CO2 separation membranes. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 17172-82	3.6	62

(2005-2014)

169	Cholinium-based supported ionic liquid membranes: a sustainable route for carbon dioxide separation. <i>ChemSusChem</i> , 2014 , 7, 110-3	8.3	62
168	Solubility of inorganic salts in pure ionic liquids. <i>Journal of Chemical Thermodynamics</i> , 2012 , 55, 29-36	2.9	62
167	Protein stability in an ionic liquid milieu: on the use of differential scanning fluorimetry. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 13614-6	3.6	62
166	Aging mechanisms of perfluorocarbon emulsions using image analysis. <i>Journal of Colloid and Interface Science</i> , 2005 , 286, 224-32	9.3	62
165	Surface hydrophobization of bacterial and vegetable cellulose fibers using ionic liquids as solvent media and catalysts. <i>Green Chemistry</i> , 2011 , 13, 2464	10	61
164	Cholinium-Based Poly(ionic liquid)s: Synthesis, Characterization, and Application as Biocompatible Ion Gels and Cellulose Coatings <i>ACS Macro Letters</i> , 2013 , 2, 975-979	6.6	59
163	Nucleic acid bases in 1-alkyl-3-methylimidazolium acetate ionic liquids: A thermophysical and ionic conductivity analysis. <i>Journal of Chemical Thermodynamics</i> , 2013 , 57, 1-8	2.9	59
162	Densities and Vapor Pressures of Highly Fluorinated Compounds. <i>Journal of Chemical & Engineering Data</i> , 2005 , 50, 1328-1333	2.8	58
161	Phosphonium-based ionic liquids as modifiers for biomedical grade poly(vinyl chloride). <i>Acta Biomaterialia</i> , 2012 , 8, 1366-79	10.8	57
160	Optimization of oxygen mass transfer in a multiphase bioreactor with perfluorodecalin as a second liquid phase. <i>Biotechnology and Bioengineering</i> , 2008 , 99, 588-98	4.9	57
159	Polymeric ionic liquids with mixtures of counter-anions: a new straightforward strategy for designing pyrrolidinium-based CO2 separation membranes. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 10403	13	56
158	A thermophysical and structural characterization of ionic liquids with alkyl and perfluoroalkyl side chains. <i>RSC Advances</i> , 2015 , 5, 65337-65350	3.7	55
157	The role of nanocellulose fibers, starch and chitosan on multipolysaccharide based films. <i>Cellulose</i> , 2013 , 20, 1807-1818	5.5	54
156	Understanding the Role of Cholinium Carboxylate Ionic Liquids in PEG-Based Aqueous Biphasic Systems. <i>ACS Sustainable Chemistry and Engineering</i> , 2014 , 2, 2426-2434	8.3	53
155	Carbohydrates-based deep eutectic solvents: Thermophysical properties and rice straw dissolution. Journal of Molecular Liquids, 2017 , 247, 441-447	6	53
154	On the interactions between amino acids and ionic liquids in aqueous media. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 13971-9	3.4	52
153	Surface Tension of Liquid Fluorocompounds. <i>Journal of Chemical & Data</i> , 2006, 51, 182	20 <u>≥</u> 18824	4 52
152	Modeling vaporliquid interfaces with the gradient theory in combination with the CPA equation of state. <i>Fluid Phase Equilibria</i> , 2005 , 228-229, 479-485	2.5	52

151	Impact of self-aggregation on the formation of ionic-liquid-based aqueous biphasic systems. Journal of Physical Chemistry B, 2012 , 116, 7660-8	3.4	51
150	Gas sorption in poly(lactic acid) and packaging materials. Fluid Phase Equilibria, 2004, 222-223, 317-324	2.5	51
149	Gas Permeation Properties of Fluorinated Ionic Liquids. <i>Industrial & Discrete Liquids amp; Engineering Chemistry Research</i> , 2013 , 52, 4994-5001	3.9	50
148	Extraction of Candida antarctica lipase A from aqueous solutions using imidazolium-based ionic liquids. <i>Separation and Purification Technology</i> , 2012 , 97, 205-210	8.3	50
147	Gas solubility of carbon dioxide in poly(lactic acid) at high pressures. <i>Journal of Polymer Science, Part B: Polymer Physics,</i> 2006 , 44, 1010-1019	2.6	50
146	New Low-Toxicity Cholinium-Based Ionic Liquids with Perfluoroalkanoate Anions for Aqueous Biphasic System Implementation. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 2670-2679	8.3	50
145	Aggregation behavior and total miscibility of fluorinated ionic liquids in water. <i>Langmuir</i> , 2015 , 31, 1283	3- ₂ 95	49
144	Antitumor Activity of Ionic Liquids Based on Ampicillin. <i>ChemMedChem</i> , 2015 , 10, 1480-3	3.7	47
143	Phase Equilibria of Ethylene Glycol Oligomers and Their Mixtures. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 7027-7037	3.9	47
142	Thermodynamic properties of perfluoro-n-octane. Fluid Phase Equilibria, 2004, 225, 39-47	2.5	47
141	Density, Viscosity, and Refractive Index of Ionic Liquid Mixtures Containing Cyano and Amino Acid-Based Anions. <i>Journal of Chemical & Engineering Data</i> , 2016 , 61, 83-93	2.8	46
140	Ionic Liquids as Additives for Extraction of Saponins and Polyphenols from Mate (Ilex paraguariensis) and Tea (Camellia sinensis). <i>Industrial & Discourse in General Research</i> , 2013 , 52, 12146-12153	3.9	46
139	Biosurfactants from yeasts: characteristics, production and application. <i>Advances in Experimental Medicine and Biology</i> , 2010 , 672, 236-49	3.6	46
138	Thermodynamic characterization of pure perfluoroalkanes, including interfacial and second order derivative properties, using the crossover soft-SAFT EoS. <i>Fluid Phase Equilibria</i> , 2009 , 286, 134-143	2.5	46
137	Liquid[Iquid equilibrium of (perfluoroalkane+alkane) binary mixtures. <i>Fluid Phase Equilibria</i> , 2006 , 242, 210-219	2.5	45
136	Measurement and modeling of surface tensions of asymmetric systems: heptane, eicosane, docosane, tetracosane and their mixtures. <i>Fluid Phase Equilibria</i> , 2003 , 214, 211-221	2.5	45
135	Aqueous biphasic systems involving alkylsulfate-based ionic liquids. <i>Journal of Chemical Thermodynamics</i> , 2011 , 43, 1565-1572	2.9	44
134	Novel polymer electrolytes based on gelatin and ionic liquids. <i>Optical Materials</i> , 2012 , 35, 187-195	3.3	43

(2005-2019)

133	Hydrophobic Deep Eutectic Solvents: A Circular Approach to Purify Water Contaminated with Ciprofloxacin. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 14739-14746	8.3	42	
132	Surface tension of pure heavy n-alkanes: a corresponding states approach. <i>Fluid Phase Equilibria</i> , 2001 , 183-184, 229-238	2.5	42	
131	Description of the mutual solubilities of fatty acids and water with the CPA EoS. <i>AICHE Journal</i> , 2009 , 55, 1604-1613	3.6	41	
130	Gas solubility of carbon dioxide in poly(lactic acid) at high pressures: Thermal treatment effect. Journal of Polymer Science, Part B: Polymer Physics, 2007 , 45, 616-625	2.6	4º	
129	Prediction of viscosities and surface tensions of fuels using a new corresponding states model. <i>Fuel</i> , 2006 , 85, 874-877	7.1	39	
128	Density and Viscosity Data for Binary Mixtures of 1-Alkyl-3-methylimidazolium Alkylsulfates + Water. <i>Journal of Chemical & Engineering Data</i> , 2012 , 57, 3473-3482	2.8	38	
127	Concurrent Desulfurization and Denitrogenation of Fuels Using Deep Eutectic Solvents. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 11341-11349	8.3	37	
126	Extraction of saponins from sisal (Agave sisalana) and ju[(Ziziphus joazeiro) with cholinium-based ionic liquids and deep eutectic solvents. <i>European Food Research and Technology</i> , 2013 , 237, 965-975	3.4	37	
125	Bioactive transparent films based on polysaccharides and cholinium carboxylate ionic liquids. <i>Green Chemistry</i> , 2015 , 17, 4291-4299	10	36	
124	Effect of polymer molecular weight on the physical properties and CO2/N2 separation of pyrrolidinium-based poly(ionic liquid) membranes. <i>Journal of Membrane Science</i> , 2018 , 549, 267-274	9.6	36	
123	Novel organic salts based on fluoroquinolone drugs: synthesis, bioavailability and toxicological profiles. <i>International Journal of Pharmaceutics</i> , 2014 , 469, 179-89	6.5	36	
122	Removal of Non-Steroidal Anti-Inflammatory Drugs from Aqueous Environments with Reusable Ionic-Liquid-based Systems. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 2428-2436	8.3	34	
121	Preparation and evaluation of the barrier properties of cellophane membranes modified with fatty acids. <i>Carbohydrate Polymers</i> , 2011 , 83, 836-842	10.3	34	
120	Solubility of water in fluorocarbons: Experimental and COSMO-RS prediction results. <i>Journal of Chemical Thermodynamics</i> , 2010 , 42, 213-219	2.9	34	
119	Solubility of fluorinated compounds in a range of ionic liquids. Cloud-point temperature dependence on composition and pressure. <i>Green Chemistry</i> , 2008 , 10, 918	10	34	
118	Mixing poly(ionic liquid)s and ionic liquids with different cyano anions: Membrane forming ability and CO 2 /N 2 separation properties. <i>Journal of Membrane Science</i> , 2018 , 552, 341-348	9.6	33	
117	Structuralfunctional evaluation of ionic liquid libraries for the design of co-solvents in lipase-catalysed reactions. <i>Green Chemistry</i> , 2014 , 16, 4520-4523	10	33	
116	Surface Tension of Decane Binary and Ternary Mixtures with Eicosane, Docosane, and Tetracosane. Journal of Chemical & Decane Binary and Ternary Mixtures with Eicosane, Docosane, and Tetracosane.	2.8	33	

115	Phase Equilibria Calculations of Polyethylene Solutions from SAFT-Type Equations of State. <i>Macromolecules</i> , 2006 , 39, 4240-4246	5.5	33
114	Carbon dioxide, ethylene and water vapor sorption in poly(lactic acid). <i>Fluid Phase Equilibria</i> , 2006 , 250, 116-124	2.5	33
113	Ionic liquids with anions based on fluorosulfonyl derivatives: from asymmetrical substitutions to a consistent force field model. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 29617-29624	3.6	32
112	Separation of azeotropic mixtures using high ionicity ionic liquids based on 1-ethyl-3-methylimidazolium thiocyanate. <i>Fluid Phase Equilibria</i> , 2015 , 389, 48-54	2.5	31
111	Partition Coefficients of Alkaloids in Biphasic Ionic-Liquid-Aqueous Systems and their Dependence on the Hofmeister Series. <i>Separation Science and Technology</i> , 2012 , 47, 284-291	2.5	31
110	Optical Properties 2010 , 97-112		31
109	Improving lipase production using a perfluorocarbon as oxygen carrier. <i>Journal of Chemical Technology and Biotechnology</i> , 2006 , 81, 1368-1374	3.5	31
108	Water solubility in linear fluoroalkanes used in blood substitute formulations. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 22923-9	3.4	31
107	Generalized relation between surface tension and viscosity: a study on pure and mixed n-alkanes. <i>Fluid Phase Equilibria</i> , 2004 , 222-223, 161-168	2.5	31
106	Poly(ionic liquid)-based engineered mixed matrix membranes for CO2/H2 separation. <i>Separation and Purification Technology</i> , 2019 , 222, 168-176	8.3	29
105	Liquid-liquid equilibrium of cholinium-derived bistriflimide ionic liquids with water and octanol. Journal of Physical Chemistry B, 2012 , 116, 9186-95	3.4	29
104	The impact of ionic liquid fluorinated moieties on their thermophysical properties and aqueous phase behaviour. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 21340-8	3.6	28
103	Effect of natural and synthetic antioxidants incorporation on the gas permeation properties of poly(lactic acid) films. <i>Journal of Food Engineering</i> , 2013 , 116, 562-571	6	28
102	Synthesis, characterization, and liposome partition of a novel tetracycline derivative using the ionic liquids framework. <i>Journal of Pharmaceutical Sciences</i> , 2013 , 102, 1504-12	3.9	27
101	Gas-phase dissociation of ionic liquid aggregates studied by electrospray ionisation mass spectrometry and energy-variable collision induced dissociation. <i>Journal of Mass Spectrometry</i> , 2009 , 44, 144-50	2.2	27
100	Hydrogen-bonding and the dissolution mechanism of uracil in an acetate ionic liquid: new insights from NMR spectroscopy and quantum chemical calculations. <i>Journal of Physical Chemistry B</i> , 2013 , 117, 4109-20	3.4	26
99	Viscosities of Liquid Fluorocompounds. <i>Journal of Chemical & Engineering Data</i> , 2008 , 53, 538-542	2.8	26
98	A new Corresponding States model for the estimation of thermophysical properties of long chain n-alkanes. <i>Fluid Phase Equilibria</i> , 2003 , 212, 303-314	2.5	26

97	Low temperature behaviour of refined products from DSC measurements and their thermodynamical modelling. <i>Thermochimica Acta</i> , 2001 , 372, 93-101	2.9	26	
96	Supported ionic liquids as efficient materials to remove non-steroidal anti-inflammatory drugs from aqueous media. <i>Chemical Engineering Journal</i> , 2020 , 381, 122616	14.7	26	
95	Solvation of nucleobases in 1,3-dialkylimidazolium acetate ionic liquids: NMR spectroscopy insights into the dissolution mechanism. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 10739-49	3.4	25	
94	Production of lysozyme nanofibers using deep eutectic solvent aqueous solutions. <i>Colloids and Surfaces B: Biointerfaces</i> , 2016 , 147, 36-44	6	25	
93	Towards the potential of cyano and amino acid-based ionic liquid mixtures for facilitated CO2 transport membranes. <i>Journal of Membrane Science</i> , 2016 , 510, 174-181	9.6	24	
92	Supramolecular hydrogel based on a sodium deep eutectic solvent. <i>Chemical Communications</i> , 2018 , 54, 7527-7530	5.8	24	
91	Solubility of Hexafluorobenzene in Aqueous Salt Solutions from (280 to 340) K. <i>Journal of Chemical & Engineering Data</i> , 2005 , 50, 237-242	2.8	24	
90	Improved Monitoring of Aqueous Samples by the Concentration of Active Pharmaceutical Ingredients using Ionic-Liquid-based Systems. <i>Green Chemistry</i> , 2017 , 19, 4651-4659	10	23	
89	Molecular Dynamics Insights and Water Stability of Hydrophobic Deep Eutectic Solvents Aided Extraction of Nitenpyram from an Aqueous Environment. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 74	103:442	.0 ²³	
88	On the use of ionic liquids as adjuvants in PEG-(NH4)2SO4 aqueous biphasic systems: Phase diagrams behavior and the effect of IL concentration on myoglobin partition. <i>Separation and Purification Technology</i> , 2019 , 210, 710-718	8.3	23	
87	Poly(ionic liquids) in solid phase microextraction: Recent advances and perspectives. <i>Progress in Polymer Science</i> , 2019 , 98, 101148	29.6	22	
86	Phase equilibria and surfactant behavior of fluorinated ionic liquids with water. <i>Journal of Chemical Thermodynamics</i> , 2015 , 82, 99-107	2.9	22	
85	Improved extraction of fluoroquinolones with recyclable ionic-liquid-based aqueous biphasic systems. <i>Green Chemistry</i> , 2016 , 18, 2717-2725	10	22	
84	The role of water in cholinium carboxylate ionic liquid aqueous solutions. <i>Journal of Chemical Thermodynamics</i> , 2015 , 84, 93-100	2.9	22	
83	Solubility of oxygen in substituted perfluorocarbons. Fluid Phase Equilibria, 2005, 238, 7-12	2.5	22	
82	CO2/H2 separation through poly(ionic liquid)Ibnic liquid membranes: The effect of multicomponent gas mixtures, temperature and gas feed pressure. <i>Separation and Purification Technology</i> , 2021 , 259, 118113	8.3	22	
81	Aging mechanisms of oil-in-water emulsions based on a bioemulsifier produced by Yarrowia lipolytica. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2008 , 324, 149-154	5.1	21	
8o	Exploring the effect of fluorinated anions on the CO/N separation of supported ionic liquid membranes. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 28876-28884	3.6	20	

79	Membranes with a low loading of MetalDrganic Framework-Supported Ionic Liquids for CO2/N2 separation in CO2 capture. <i>Energy Technology</i> , 2017 , 5, 2158-2162	3.5	19
78	High ionicity ionic liquids (HIILs): comparing the effect of ethylsulfonate and ethylsulfate anions. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 18138-47	3.6	19
77	Prediction of environmental parameters of polycyclic aromatic hydrocarbons with COSMO-RS. <i>Chemosphere</i> , 2010 , 79, 821-9	8.4	19
76	Solubility of Adamantane in Phosphonium-Based Ionic Liquids [] <i>Journal of Chemical & Dough</i> (1997) <i>Journal of Chemical & Dough</i> (1997) <i>Engineering Data</i> , 2010 , 55, 662-665	2.8	19
75	Modeling the Liquid Liquid Equilibria of Water + Fluorocarbons with the Cubic-Plus-Association Equation of State. <i>Industrial & amp; Engineering Chemistry Research</i> , 2007 , 46, 1415-1420	3.9	19
74	Vapor-Phase Thermal Conductivity, Vapor Pressure, and Liquid Density of R365mfc. <i>Journal of Chemical & Description of Che</i>	2.8	19
73	Study on Gas Permeation and CO2 Separation through Ionic Liquid-Based Membranes with Siloxane-Functionalized Cations. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 2229-2239	3.9	18
72	Addition of £copherol on poly(lactic acid): Thermal, mechanical, and sorption properties. <i>Journal of Applied Polymer Science</i> , 2011 , 119, 2468-2475	2.9	18
71	Imidazolium-Based Copoly(Ionic Liquid) Membranes for CO2/N2 Separation. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 2017-2026	3.9	18
70	(Liquid+liquid) equilibria of perfluorocarbons with fluorinated ionic liquids. <i>Journal of Chemical Thermodynamics</i> , 2013 , 64, 71-79	2.9	17
69	Influence of Different Inorganic Salts on the Ionicity and Thermophysical Properties of 1-Ethyl-3-methylimidazolium Acetate Ionic Liquid. <i>Journal of Chemical & Data</i> , 2015, 60, 781-789	2.8	17
68	Thermal conductivity of polyurethane foam cell gases: Improved transient hot wire cell data of isopentane + n-pentane mixtures Extended Wassiljewa-model. <i>Fluid Phase Equilibria</i> , 2007 , 261, 41-49	2.5	17
67	Corresponding-States Modeling of the Speed of Sound of Long-Chain Hydrocarbons. <i>International Journal of Thermophysics</i> , 2006 , 27, 1095-1109	2.1	17
66	Enzymatic method for determining oxygen solubility in perfluorocarbon emulsions. <i>Fluid Phase Equilibria</i> , 2005 , 231, 109-113	2.5	17
65	Dual nanofibrillar-based bio-sorbent films composed of nanocellulose and lysozyme nanofibrils for mercury removal from spring waters. <i>Carbohydrate Polymers</i> , 2020 , 238, 116210	10.3	16
64	Modeling the Phase Equilibria of Poly(ethylene glycol) Binary Mixtures with soft-SAFT EoS. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 4678-4685	3.9	16
63	Paraffin crystallization in synthetic mixtures: Predictive local composition models revisited. <i>Fluid Phase Equilibria</i> , 2005 , 233, 28-33	2.5	16
62	Towards Biohydrogen Separation Using Poly(Ionic Liquid)/Ionic Liquid Composite Membranes. <i>Membranes</i> , 2018 , 8,	3.8	16

(2020-2013)

61	Ionic liquids based aqueous biphasic systems: Effect of the alkyl chains in the cation versus in the anion. <i>Journal of Chemical Thermodynamics</i> , 2013 , 65, 106-112	2.9	15	
60	High-Pressure Solubility Data of Methane in Aniline and Aqueous Aniline Systems. <i>Journal of Chemical & Data</i> , 2007 , 52, 1100-1102	2.8	15	
59	Antimicrobial Activities of Highly Bioavailable Organic Salts and Ionic Liquids from Fluoroquinolones. <i>Pharmaceutics</i> , 2020 , 12,	6.4	15	
58	Aqueous solubility, effects of salts on aqueous solubility, and partitioning behavior of hexafluorobenzene: experimental results and COSMO-RS predictions. <i>Chemosphere</i> , 2011 , 84, 415-22	8.4	14	
57	Novel Acidic Deep Eutectic Solvent-Based Aqueous Biphasic Systems for Efficient Extraction of Pepsin. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 12400-12408	8.3	14	
56	Surface Tension of dl-Menthol:Octanoic Acid Eutectic Mixtures. <i>Journal of Chemical & Engineering Data</i> , 2019 , 64, 4915-4923	2.8	13	
55	Correlation of solvent activities in polymer solutions: a comparison of models. <i>Fluid Phase Equilibria</i> , 2004 , 219, 129-138	2.5	13	
54	A corresponding states approach for the prediction of surface tension of molten alkali halides. <i>Fluid Phase Equilibria</i> , 2001 , 183-184, 239-245	2.5	13	
53	Tuning lysozyme nanofibers dimensions using deep eutectic solvents for improved reinforcement ability. <i>International Journal of Biological Macromolecules</i> , 2018 , 115, 518-527	7.9	12	
52	LiquidIquid equilibrium of (1H,1H,7H-perfluoroheptan-1-ol+perfluoroalkane) binary mixtures. <i>Fluid Phase Equilibria</i> , 2007 , 251, 33-40	2.5	12	
51	Aging of Rigid Polyurethane Foams: Thermal Conductivity of N2 and Cyclopentane Gas Mixtures. Journal of Cellular Plastics, 2005 , 41, 207-224	1.5	12	
50	Deep desulfurization of fuels: Are deep eutectic solvents the alternative for ionic liquids?. <i>Fuel</i> , 2021 , 293, 120297	7.1	12	
49	Poly(ionic liquid) embedded particles as efficient solid phase microextraction phases of polar and aromatic analytes. <i>Talanta</i> , 2019 , 198, 193-199	6.2	11	
48	Mixtures of the 1-ethyl-3-methylimidazolium acetate ionic liquid with different inorganic salts: insights into their interactions. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 2756-66	3.6	11	
47	Ionic liquids as promoters of fast lysozyme fibrillation. <i>Journal of Molecular Liquids</i> , 2018 , 272, 456-467	6	11	
46	Expanding the Applicability of Poly(Ionic Liquids) in Solid Phase Microextraction: Pyrrolidinium Coatings. <i>Materials</i> , 2017 , 10,	3.5	11	
45	Poly(ionic liquid)s as phase splitting promoters in aqueous biphasic systems. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 27462-72	3.6	10	
44	Purification of virus-like particles using aqueous biphasic systems composed of natural deep eutectic solvents. <i>Separation and Purification Technology</i> , 2020 , 252, 117480	8.3	10	

43	Neat ionic liquids versus ionic liquid mixtures: a combination of experimental data and molecular simulation. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 23305-23309	3.6	10
42	Poly(ionic liquid)Ibnic Liquid Membranes with Fluorosulfonyl-Derived Anions: Characterization and Biohydrogen Separation. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 7087-7096	8.3	9
41	Enzyme-assisted extraction of carotenoids and phenolic compounds from sunflower wastes using green solvents. <i>3 Biotech</i> , 2020 , 10, 405	2.8	9
40	Designing high ionicity ionic liquids based on 1-ethyl-3-methylimidazolium ethyl sulphate for effective azeotrope breaking. <i>Fluid Phase Equilibria</i> , 2016 , 419, 57-66	2.5	9
39	Improving the Separation of n-Heptane + Ethanol Azeotropic Mixtures Combining Ionic Liquid 1-Ethyl-3-methylimidazolium Acetate with Different Inorganic Salts. <i>Industrial & Different Inorganic Salts</i> . <i>Industrial & Different Inorganic Salts</i> . <i>Industrial & Different Industrial & Different Industri</i>	3.9	9
38	Thermodynamic Study of Aggregation of Cholinium Perfluoroalkanoate Ionic Liquids. <i>Journal of Chemical & Chemi</i>	2.8	8
37	Cholinium Lactate Methacrylate: Ionic Liquid Monomer for Cellulose Composites and Biocompatible Ion Gels. <i>Macromolecular Symposia</i> , 2014 , 342, 21-24	0.8	8
36	Biodegradable Polymer-Phase Behavior: Liquid[liquid Equilibrium of Ethyl Lactate and Poly(Lactic Acid). <i>Journal of Chemical & Data</i> , 2008, 53, 588-590	2.8	8
35	A quartz crystal microbalance technique to study wax crystallization in the presence of gas. <i>Measurement Science and Technology</i> , 2008 , 19, 065704	2	8
34	Highly water soluble room temperature superionic liquids of APIs. <i>New Journal of Chemistry</i> , 2017 , 41, 6986-6990	3.6	7
33	How does tyclodextrin affect the aggregation of sodium perfluoroheptanoate in aqueous solution: a 19F NMR study. <i>Journal of Inclusion Phenomena and Macrocyclic Chemistry</i> , 2007 , 57, 157-162	2	7
32	M13 bacteriophage purification using poly(ionic liquids) as alternative separation matrices. <i>Journal of Chromatography A</i> , 2018 , 1532, 246-250	4.5	7
31	Layer-by-layer coated imidazolium tyrene copolymers fibers for improved headspace-solid phase microextraction analysis of aromatic compounds. <i>Reactive and Functional Polymers</i> , 2018 , 125, 93-100	4.6	6
30	Protonation Equilibria and Lipophilicity of Sarafloxacin. <i>Journal of Chemical & Data</i> , 2010, 55, 3160-3163	2.8	6
29	Liquid II quid equilibrium of substituted perfluoro-n-octane+n-octane systems. <i>Fluid Phase Equilibria</i> , 2008 , 268, 85-89	2.5	6
28	How does beta-cyclodextrin affect oxygen solubility in aqueous solutions of sodium perfluoroheptanoate?. <i>Journal of Colloid and Interface Science</i> , 2006 , 303, 552-6	9.3	6
27	Modeling the Thermal Conductivity of Pure and Mixed Heavy n-Alkanes Suitable for the Design of Phase Change Materials. <i>International Journal of Thermophysics</i> , 2005 , 26, 1461-1475	2.1	6
26	Aqueous Biphasic Systems of Pyrrolidinium Ionic Liquids with Organic Acid-Derived Anions and K3PO4. <i>Journal of Chemical & Engineering Data</i> , 2017 , 62, 1182-1188	2.8	5

25	A corresponding-states approach for the calculation of the transport properties of uni-univalent molten salts. <i>High Temperatures - High Pressures</i> , 2001 , 33, 397-404	1.3	5
24	Vapor Pressure Assessment of Sulfolane-Based Eutectic Solvents: Experimental, PC-SAFT, and Molecular Dynamics. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 10386-10397	3.4	5
23	Thin Porous Poly(ionic liquid) Coatings for Enhanced Headspace Solid Phase Microextraction. <i>Polymers</i> , 2020 , 12,	4.5	5
22	High-throughput screening of aqueous biphasic systems with ionic liquids as additives for extraction and purification of enveloped virus-like particles. <i>Engineering Reports</i> , 2019 , 1, e12030	1.2	4
21	Extended corresponding states for pure polar and non-polar fluids: an improved method for component shape factor prediction. <i>Fluid Phase Equilibria</i> , 1998 , 150-151, 215-223	2.5	4
20	Vapor-Phase Thermal Conductivity of Binary Mixtures of Cyclopentane and R134a with R365mfc. <i>Journal of Cellular Plastics</i> , 2003 , 39, 133-153	1.5	4
19	Development of an Extended Corresponding States Principle Method for Volumetric Property Predictions Based on a Leekesler Reference Fluid. <i>International Journal of Thermophysics</i> , 2002 , 23, 771-785	2.1	4
18	Ionic liquid-based semi-interpenetrating polymer network (sIPN) membranes for CO2 separation. <i>Separation and Purification Technology</i> , 2021 , 274, 118437	8.3	4
17	Ionic Liquid with Silyl Substituted Cation: Thermophysical and CO2/N2 Permeation Properties. <i>Israel Journal of Chemistry</i> , 2019 , 59, 852-865	3.4	3
16	Aqueous Biphasic Systems Based on Ionic Liquids for Extraction, Concentration and Purification Approaches. <i>Green Chemistry and Sustainable Technology</i> , 2016 , 91-119	1.1	3
15	Tuning the miscibility of water in imide-based ionic liquids. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 25236-25242	3.6	3
14	Beneficial and detrimental effects of choline chloride-oxalic acid deep eutectic solvent on biogas production. <i>Waste Management</i> , 2021 , 131, 368-375	8.6	3
13	Influence of Betaine- and Choline-based Eutectic Solvents on Lipase Activity. <i>Current Biochemical Engineering</i> , 2019 , 5, 57-68	2	2
12	Light olefins/paraffins sorption in poly(lactic acid) films. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2008 , 46, 1312-1319	2.6	2
11	Screening polymeric ionic liquids for chromatography-based purification of bacteriophage M13. <i>Separation and Purification Technology</i> , 2021 , 257, 117906	8.3	1
10	Predicting the Thermodynamic Behaviour of Water + Ionic Liquids Systems Using COSMO-RS101-121		1
9	Fluoroquinolone-Based Organic Salts and Ionic Liquids as Highly Bioavailable Broad-Spectrum Antimicrobials. <i>Proceedings (mdpi)</i> , 2021 , 78, 3	0.3	О
8	Processing of poly(ionic liquid)Ibnic liquid membranes using femtosecond (fs) laser radiation: Effect on CO2 separation performance. <i>Journal of Membrane Science</i> , 2022 , 642, 119903	9.6	O

4.3

- Natural eutectic solvents for sustainable recycling of poly(ethyleneterephthalate): closing the circle. *Green Chemistry*,

 Sodium Hexanoate and Dodecanoate Salt-Based Eutectic Solvents: Density, Viscosity, and Kamletlaft Parameters. *Journal of Chemical & Data*, 2021, 66, 2793-2802

 Mass Spectrometric Studies on Ionic Liquid Aggregates 2012, 49-61

 New CO2 Separation Membranes based on Pyrrolidinium Ionic Materials. *Procedia Engineering*, 2012, 44, 1583-1584

 Poly(ionic liquid)s: Designing CO2 Separation Membranes 2015, 267-295

 Mesoporous silica nanoparticles with manganese and lanthanide salts: synthesis, characterization
- OPTICAL AND SPECTROSCOPIC PROPERTIES **2022**, 115-133

and cytotoxicity studies. Dalton Transactions, 2021, 50, 8588-8599