
Yanqiong Xiong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6574308/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Failures in Clinical Treatment of <i>Staphylococcus aureus</i> Infection with Daptomycin Are Associated with Alterations in Surface Charge, Membrane Phospholipid Asymmetry, and Drug Binding. Antimicrobial Agents and Chemotherapy, 2008, 52, 269-278.	1.4	305
2	Advances in antimicrobial peptide immunobiology. Biopolymers, 2006, 84, 435-458.	1.2	248
3	The Staphylococcus aureus Two-Component Regulatory System, GraRS, Senses and Confers Resistance to Selected Cationic Antimicrobial Peptides. Infection and Immunity, 2012, 80, 74-81.	1.0	159
4	Enhanced Expression of <i>dltABCD</i> Is Associated with the Development of Daptomycin Nonsusceptibility in a Clinical Endocarditis Isolate of <i>Staphylococcus aureus</i> . Journal of Infectious Diseases, 2009, 200, 1916-1920.	1.9	147
5	Regulation ofStaphylococcus aureusαâ€Toxin Gene(hla)Expression byagr, sarA,andsaeIn Vitro and in Experimental Infective Endocarditis. Journal of Infectious Diseases, 2006, 194, 1267-1275.	1.9	137
6	Regulation of mprF in Daptomycin-Nonsusceptible Staphylococcus aureus Strains. Antimicrobial Agents and Chemotherapy, 2009, 53, 2636-2637.	1.4	117
7	Daptomycin-Oxacillin Combinations in Treatment of Experimental Endocarditis Caused by Daptomycin-Nonsusceptible Strains of Methicillin-Resistant <i>Staphylococcus aureus</i> with Evolving Oxacillin Susceptibility (the "Seesaw Effectâ€). Antimicrobial Agents and Chemotherapy, 2010, 54, 3161-3169.	1.4	117
8	Functional Interrelationships between Cell Membrane and Cell Wall in Antimicrobial Peptide-Mediated Killing of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2005, 49, 3114-3121.	1.4	113
9	Phenotypic and Genotypic Characteristics of Persistent Methicillinâ€Resistant <i>Staphylococcus aureus</i> Bacteremia In Vitro and in an Experimental Endocarditis Model. Journal of Infectious Diseases, 2009, 199, 201-208.	1.9	106
10	Real-Time In Vivo Bioluminescent Imaging for Evaluating the Efficacy of Antibiotics in a Rat Staphylococcus aureus Endocarditis Model. Antimicrobial Agents and Chemotherapy, 2005, 49, 380-387.	1.4	96
11	Role of the serine-rich surface glycoprotein GspB of Streptococcus gordonii in the pathogenesis of infective endocarditis. Microbial Pathogenesis, 2008, 45, 297-301.	1.3	96
12	In vitro susceptibility of Staphylococcus aureus to thrombin-induced platelet microbicidal protein-1 (tPMP-1) is influenced by cell membrane phospholipid composition and asymmetry. Microbiology (United Kingdom), 2007, 153, 1187-1197.	0.7	87
13	A Structural Model for Binding of the Serine-Rich Repeat Adhesin GspB to Host Carbohydrate Receptors. PLoS Pathogens, 2011, 7, e1002112.	2.1	75
14	Impact of Vancomycin on sarA-Mediated Biofilm Formation: Role in Persistent Endovascular Infections Due to Methicillin-Resistant Staphylococcus aureus. Journal of Infectious Diseases, 2014, 209, 1231-1240.	1.9	70
15	Tricarboxylic Acid Cycle-Dependent Attenuation of <i>Staphylococcus aureus</i> In Vivo Virulence by Selective Inhibition of Amino Acid Transport. Infection and Immunity, 2009, 77, 4256-4264.	1.0	66
16	Role of <i>mgrA</i> and <i>sarA</i> in Methicillinâ€Resistant <i>Staphylococcus aureus</i> Autolysis and Resistance to Cell Wall–Active Antibiotics. Journal of Infectious Diseases, 2009, 199, 209-218.	1.9	65
17	Reduced Vancomycin Susceptibility in an <i>In Vitro</i> Catheter-Related Biofilm Model Correlates with Poor Therapeutic Outcomes in Experimental Endocarditis Due to Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2013, 57, 1447-1454.	1.4	61
18	Mechanisms of NDV-3 vaccine efficacy in MRSA skin versus invasive infection. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5555-63.	3.3	61

#	Article	IF	CITATIONS
19	Synthesizing a Healable Stretchable Transparent Conductor. ACS Applied Materials & Interfaces, 2015, 7, 14140-14149.	4.0	59
20	Nonredundant Roles of Interleukin-17A (IL-17A) and IL-22 in Murine Host Defense against Cutaneous and Hematogenous Infection Due to Methicillin-Resistant Staphylococcus aureus. Infection and Immunity, 2015, 83, 4427-4437.	1.0	58
21	Relationship of <i>agr</i> Expression and Function with Virulence and Vancomycin Treatment Outcomes in Experimental Endocarditis Due to Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2011, 55, 5631-5639.	1.4	57
22	Bacteriophage Lysin Mediates the Binding of Streptococcus mitis to Human Platelets through Interaction with Fibrinogen. PLoS Pathogens, 2010, 6, e1001047.	2.1	56
23	Combinatorial Phenotypic Signatures Distinguish Persistent from Resolving Methicillin-Resistant <i>Staphylococcus aureus</i> Bacteremia Isolates. Antimicrobial Agents and Chemotherapy, 2011, 55, 575-582.	1.4	56
24	Efficacy of NZ2114, a Novel Plectasin-Derived Cationic Antimicrobial Peptide Antibiotic, in Experimental Endocarditis Due to Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2011, 55, 5325-5330.	1.4	55
25	Efficient white polymer light-emitting electrochemical cells. Materials Horizons, 2015, 2, 338-343.	6.4	54
26	MgrA Activates Expression of Capsule Genes, but Not the α-Toxin Gene in Experimental Staphylococcus aureus Endocarditis. Journal of Infectious Diseases, 2013, 208, 1841-1848.	1.9	53
27	The Antistaphylococcal Lysin, CF-301, Activates Key Host Factors in Human Blood To Potentiate Methicillin-Resistant <i>Staphylococcus aureus</i> Bacteriolysis. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	51
28	Platelet Antistaphylococcal Responses Occur through P2X ₁ and P2Y ₁₂ Receptor-Induced Activation and Kinocidin Release. Infection and Immunity, 2008, 76, 5706-5713.	1.0	47
29	In vitro endothelial cell damage is positively correlated with enhanced virulence and poor vancomycin responsiveness in experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Cellular Microbiology, 2011, 13, 1530-1541.	1.1	46
30	Role of the LytSR Two-Component Regulatory System in Adaptation to Cationic Antimicrobial Peptides in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2013, 57, 3875-3882.	1.4	46
31	A Solid-State Intrinsically Stretchable Polymer Solar Cell. ACS Applied Materials & Interfaces, 2017, 9, 40523-40532.	4.0	45
32	Role of the Serine-Rich Surface Glycoprotein Srr1 of Streptococcus agalactiae in the Pathogenesis of Infective Endocarditis. PLoS ONE, 2013, 8, e64204.	1.1	41
33	Site-Specific Mutation of the Sensor Kinase GraS in Staphylococcus aureus Alters the Adaptive Response to Distinct Cationic Antimicrobial Peptides. Infection and Immunity, 2014, 82, 5336-5345.	1.0	41
34	gC1qR/p33 Blockade Reduces Staphylococcus aureus Colonization of Target Tissues in an Animal Model of Infective Endocarditis. Infection and Immunity, 2006, 74, 4418-4423.	1.0	39
35	The Global Regulon <i>sarA</i> Regulates β-Lactam Antibiotic Resistance in Methicillin-Resistant <i>Staphylococcus aureus</i> In Vitro and in Endovascular Infections. Journal of Infectious Diseases, 2016, 214, 1421-1429.	1.9	37
36	A Human Biofilm-Disrupting Monoclonal Antibody Potentiates Antibiotic Efficacy in Rodent Models of both Staphylococcus aureus and Acinetobacter baumannii Infections. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	34

#	Article	IF	CITATIONS
37	The GraS Sensor in Staphylococcus aureus Mediates Resistance to Host Defense Peptides Differing in Mechanisms of Action. Infection and Immunity, 2016, 84, 459-466.	1.0	33
38	Synergistic Effect of Pleuromutilins with Other Antimicrobial Agents against Staphylococcus aureus In Vitro and in an Experimental Galleria mellonella Model. Frontiers in Pharmacology, 2017, 8, 553.	1.6	30
39	Role of Purine Biosynthesis in Persistent Methicillin-Resistant Staphylococcus aureus Infection. Journal of Infectious Diseases, 2018, 218, 1367-1377.	1.9	29
40	<i>In Vivo</i> Pharmacokinetic/Pharmacodynamic Profiles of Valnemulin in an Experimental Intratracheal Mycoplasma gallisepticum Infection Model. Antimicrobial Agents and Chemotherapy, 2015, 59, 3754-3760.	1.4	28
41	A Synthetic Congener Modeled on a Microbicidal Domain of Thrombin- Induced Platelet Microbicidal Protein 1 Recapitulates Staphylocidal Mechanisms of the Native Molecule. Antimicrobial Agents and Chemotherapy, 2006, 50, 3786-3792.	1.4	27
42	In vitro and in vivo activity of d-serine in combination with β-lactam antibiotics against methicillin-resistant Staphylococcus aureus. Acta Pharmaceutica Sinica B, 2019, 9, 496-504.	5.7	27
43	Recognition of specific sialoglycan structures by oral streptococci impacts the severity of endocardial infection. PLoS Pathogens, 2019, 15, e1007896.	2.1	27
44	Bicarbonate Resensitization of Methicillin-Resistant <i>Staphylococcus aureus</i> to β-Lactam Antibiotics. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	27
45	Divergent Responses of Different Endothelial Cell Types to Infection with Candida albicans and Staphylococcus aureus. PLoS ONE, 2012, 7, e39633.	1.1	27
46	Hypericin enhances β-lactam antibiotics activity by inhibiting sarA expression in methicillin-resistant Staphylococcus aureus. Acta Pharmaceutica Sinica B, 2019, 9, 1174-1182.	5.7	26
47	Factors Influencing Time to Vancomycinâ€Induced Clearance of Nonendocarditis Methicillinâ€ResistantStaphylococcus aureusBacteremia: Role of Platelet Microbicidal Protein Killing andagrGenotypes. Journal of Infectious Diseases, 2010, 201, 233-240.	1.9	25
48	Endovascular Infections Caused by Methicillin-Resistant Staphylococcus aureus Are Linked to Clonal Complex-Specific Alterations in Binding and Invasion Domains of Fibronectin-Binding Protein A as Well as the Occurrence of <i>fnbB</i> . Infection and Immunity, 2015, 83, 4772-4780.	1.0	24
49	Early <i>agr</i> activation correlates with vancomycin treatment failure in multi-clonotype MRSA endovascular infections. Journal of Antimicrobial Chemotherapy, 2015, 70, 1443-1452.	1.3	24
50	Pharmacokinetic/Pharmacodynamic Profiles of Tiamulin in an Experimental Intratracheal Infection Model of Mycoplasma gallisepticum. Frontiers in Veterinary Science, 2016, 3, 75.	0.9	24
51	Daphnetin: A Novel Anti-Helicobacter pylori Agent. International Journal of Molecular Sciences, 2019, 20, 850.	1.8	24
52	Globally deimmunized lysostaphin evades human immune surveillance and enables highly efficacious repeat dosing. Science Advances, 2020, 6, .	4.7	22
53	Telavancin in Therapy of Experimental Aortic Valve Endocarditis in Rabbits Due to Daptomycin-Nonsusceptible Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2012, 56, 5528-5533.	1.4	20
54	The Stringent Response Contributes to Persistent Methicillin-Resistant Staphylococcus aureus Endovascular Infection Through the Purine Biosynthetic Pathway. Journal of Infectious Diseases, 2020, 222, 1188-1198.	1.9	19

#	Article	IF	CITATIONS
55	Comparative Efficacies of Tedizolid Phosphate, Linezolid, and Vancomycin in a Murine Model of Subcutaneous Catheter-Related Biofilm Infection Due to Methicillin-Susceptible and -Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2016, 60, 5092-5096.	1.4	18
56	MgrA Governs Adherence, Host Cell Interaction, and Virulence in a Murine Model of Bacteremia Due to Staphylococcus aureus. Journal of Infectious Diseases, 2019, 220, 1019-1028.	1.9	16
57	Ability of Bicarbonate Supplementation To Sensitize Selected Methicillin-Resistant <i>Staphylococcus aureus</i> Strains to β-Lactam Antibiotics in an <i>Ex Vivo</i> Simulated Endocardial Vegetation Model. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	16
58	Increased activity of linezolid in combination with rifampicin in a murine pneumonia model due to MRSA. Journal of Antimicrobial Chemotherapy, 2018, 73, 1899-1907.	1.3	15
59	Effect of the Lysin Exebacase on Cardiac Vegetation Progression in a Rabbit Model of Methicillin-Resistant Staphylococcus aureus Endocarditis as Determined by Echocardiography. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	14
60	Scope and Predictive Genetic/Phenotypic Signatures of Bicarbonate (NaHCO ₃) Responsiveness and β-Lactam Sensitization in Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	13
61	Pattern of clopidogrel use in hospitalized patients receiving percutaneous coronary interventions. American Journal of Health-System Pharmacy, 2010, 67, 1430-1437.	0.5	12
62	New Mechanistic Insights into Purine Biosynthesis with Second Messenger c-di-AMP in Relation to Biofilm-Related Persistent Methicillin-Resistant Staphylococcus aureus Infections. MBio, 2021, 12, e0208121.	1.8	12
63	Comparative efficacy of telavancin and daptomycin in experimental endocarditis due to multi-clonotype MRSA strains. Journal of Antimicrobial Chemotherapy, 2016, 71, 2890-2894.	1.3	11
64	Nano-mupirocin: enabling the parenteral activity of mupirocin. European Journal of Nanomedicine, 2016, 8, 139-149.	0.6	11
65	Deimmunized Lysostaphin Synergizes with Small-Molecule Chemotherapies and Resensitizes Methicillin-Resistant <i>Staphylococcus aureus</i> to β-Lactam Antibiotics. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	11
66	The role ofStaphylococcalcarotenogenesis in resistance to host defense peptides andin vivovirulence in experimental endocarditis model. Pathogens and Disease, 2015, 73, ftv056.	0.8	10
67	Phenotypic and Genotypic Characteristics of Methicillin-Resistant Staphylococcus aureus (MRSA) Related to Persistent Endovascular Infection. Antibiotics, 2019, 8, 71.	1.5	9
68	Impact of Bicarbonate on PBP2a Production, Maturation, and Functionality in Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	9
69	Experimental Endocarditis Model of Methicillin Resistant Staphylococcus aureus (MRSA) in Rat. Journal of Visualized Experiments, 2012, , e3863.	0.2	8
70	Telavancin Is Active against Experimental Aortic Valve Endocarditis Caused by Daptomycin- and Methicillin-Resistant Staphylococcus aureus Strains. Antimicrobial Agents and Chemotherapy, 2017, 61,	1.4	8
71	Prevalence of cfr in Enterococcus faecalis strains isolated from swine farms in China: Predominated cfr-carrying pCPPF5-like plasmids conferring "non-linezolid resistance―phenotype. Infection, Genetics and Evolution, 2018, 62, 188-192.	1.0	8
72	Efficacy of ARV-1502, a Proline-Rich Antimicrobial Peptide, in a Murine Model of Bacteremia Caused by Multi-Drug Resistant (MDR) Acinetobacter baumannii. Molecules, 2019, 24, 2820.	1.7	8

#	Article	IF	CITATIONS
73	Genome Sequences of Sequence Type 45 (ST45) Persistent Methicillin-Resistant Staphylococcus aureus (MRSA) Bacteremia Strain 300-169 and ST45 Resolving MRSA Bacteremia Strain 301-188. Genome Announcements, 2014, 2, .	0.8	7
74	Pharmacokinetic/Pharmacodynamic Correlation of Cefquinome Against Experimental Catheter-Associated Biofilm Infection Due to Staphylococcus aureus. Frontiers in Microbiology, 2015, 6, 1513.	1.5	7
75	Disparity in the In Vitro versus In Vivo Regulation of Fibronectinâ€Binding Proteins by 2 Global Regulators, <i>saeRS</i> and <i>sigB</i> , in <i>Staphylococcus aureus</i> . Journal of Infectious Diseases, 2009, 200, 1371-1374.	1.9	6
76	Redeploying β-Lactams Against <i>Staphylococcus aureus:</i> Repurposing With a Purpose. Journal of Infectious Diseases, 2017, 215, 11-13.	1.9	6
77	Impact of the Novel Prophage ï•SA169 on Persistent Methicillin-Resistant Staphylococcus aureus Endovascular Infection. MSystems, 2020, 5, .	1.7	5
78	Linezolid and Rifampicin Combination to Combat cfr-Positive Multidrug-Resistant MRSA in Murine Models of Bacteremia and Skin and Skin Structure Infection. Frontiers in Microbiology, 2019, 10, 3080.	1.5	5
79	Role of the Staphylococcus aureus Extracellular Loop of GraS in Resistance to Distinct Human Defense Peptides in PMN and Invasive Cardiovascular infections. Infection and Immunity, 2021, 89, e0034721.	1.0	5
80	Efficacy of Antistaphylococcal Lysin LSVT-1701 in Combination with Daptomycin in Experimental Left-Sided Infective Endocarditis Due to Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2021, 65, e0050821.	1.4	4
81	Proteoglycan 4 (lubricin) is a highly sialylated glycoprotein associated with cardiac valve damage in animal models of infective endocarditis. Glycobiology, 2021, , .	1.3	3
82	Identification of Methicillin-Resistant Staphylococcus aureus (MRSA) Genetic Factors Involved in Human Endothelial Cells Damage, an Important Phenotype Correlated with Persistent Endovascular Infection. Antibiotics, 2022, 11, 316.	1.5	3