
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6574214/publications.pdf Version: 2024-02-01

LOBILHOIT

#	Article	IF	CITATIONS
1	The representational glue for incidental category learning is alignment with task-relevant behavior Journal of Experimental Psychology: Learning Memory and Cognition, 2022, 48, 769-784.	0.7	6
2	A neural network model of the effect of prior experience with regularities on subsequent category learning. Cognition, 2022, 222, 104997.	1.1	6
3	Adjustment of cue weighting in speech by speakers and listeners: Evidence from amplitude and duration modifications of Mandarin Chinese tone. Journal of the Acoustical Society of America, 2022, 151, 992-1005.	0.5	6
4	Non-sensory Influences on Auditory Learning and Plasticity. JARO - Journal of the Association for Research in Otolaryngology, 2022, 23, 151-166.	0.9	1
5	Long-term priors constrain category learning in the context of short-term statistical regularities. Psychonomic Bulletin and Review, 2022, 29, 1925-1937.	1.4	6
6	Adaptive Plasticity Under Adverse Listening Conditions is Disrupted in Developmental Dyslexia. Journal of the International Neuropsychological Society, 2021, 27, 12-22.	1.2	6
7	The Learning Signal in Perceptual Tuning of Speech: Bottom Up Versus Topâ€Đown Information. Cognitive Science, 2021, 45, e12947.	0.8	6
8	Attentional modulation of neural entrainment to sound streams in children with and without ADHD. NeuroImage, 2021, 224, 117396.	2.1	16
9	Generalization of dimension-based statistical learning. Attention, Perception, and Psychophysics, 2020, 82, 1744-1762.	0.7	12
10	Nevertheless, it persists: Dimension-based statistical learning and normalization of speech impact different levels of perceptual processing. Cognition, 2020, 202, 104328.	1.1	13
11	Incidental Categorization of Vibrotactile Stimuli. IEEE Transactions on Haptics, 2020, 13, 73-79.	1.8	3
12	Tailored perception: Individuals' speech and music perception strategies fit their perceptual abilities Journal of Experimental Psychology: General, 2020, 149, 914-934.	1.5	23
13	Auditory information-integration category learning in young children and adults. Journal of Experimental Child Psychology, 2019, 188, 104673.	0.7	9
14	Subthalamic Nucleus and Sensorimotor Cortex Activity During Speech Production. Journal of Neuroscience, 2019, 39, 2698-2708.	1.7	40
15	Normal categorical perception to syllable-like stimuli in long term and in first episode schizophrenia. Schizophrenia Research, 2019, 208, 124-132.	1.1	1
16	Perceptual dimensions influence auditory category learning. Attention, Perception, and Psychophysics, 2019, 81, 912-926.	0.7	12
17	Role of the striatum in incidental learning of sound categories. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4671-4680.	3.3	36
18	Talker change detection: A comparison of human and machine performance. Journal of the Acoustical Society of America, 2019, 145, 131-142.	0.5	8

#	Article	IF	CITATIONS
19	Short-term adaptation to sound statistics is unimpaired in developmental dyslexia. PLoS ONE, 2018, 13, e0198146.	1.1	8
20	Subthalamic Nucleus Neurons Differentially Encode Early and Late Aspects of Speech Production. Journal of Neuroscience, 2018, 38, 5620-5631.	1.7	35
21	Dimension-selective attention as a possible driver of dynamic, context-dependent re-weighting in speech processing. Hearing Research, 2018, 366, 50-64.	0.9	25
22	Task and distribution sampling affect auditory category learning. Attention, Perception, and Psychophysics, 2018, 80, 1804-1822.	0.7	12
23	Simultaneous tracking of coevolving distributional regularities in speech Journal of Experimental Psychology: Human Perception and Performance, 2018, 44, 1760-1779.	0.7	13
24	Dimensionâ€Based Statistical Learning Affects Both Speech Perception and Production. Cognitive Science, 2017, 41, 885-912.	0.8	15
25	Extensive Tonotopic Mapping across Auditory Cortex Is Recapitulated by Spectrally Directed Attention and Systematically Related to Cortical Myeloarchitecture. Journal of Neuroscience, 2017, 37, 12187-12201.	1.7	27
26	Adaptive plasticity in speech perception: Effects of external information and internal predictions Journal of Experimental Psychology: Human Perception and Performance, 2016, 42, 1048-1059.	0.7	15
27	Probabilistic category learning in developmental dyslexia: Evidence from feedback and paired-associate weather prediction tasks Neuropsychology, 2015, 29, 844-854.	1.0	25
28	Dimension-based statistical learning of vowels Journal of Experimental Psychology: Human Perception and Performance, 2015, 41, 1783-1798.	0.7	32
29	Discovering functional units in continuous speech Journal of Experimental Psychology: Human Perception and Performance, 2015, 41, 1139-1152.	0.7	10
30	Incidental auditory category learning Journal of Experimental Psychology: Human Perception and Performance, 2015, 41, 1124-1138.	0.7	25
31	Impaired Statistical Learning in Developmental Dyslexia. Journal of Speech, Language, and Hearing Research, 2015, 58, 934-945.	0.7	117
32	The representation of women in cognition. Cognition, 2015, 141, 170-171.	1.1	3
33	Incidental learning of sound categories is impaired in developmental dyslexia. Cortex, 2015, 73, 131-143.	1.1	59
34	Evidence for Cerebellar Contributions to Adaptive Plasticity in Speech Perception. Cerebral Cortex, 2015, 25, 1867-1877.	1.6	40
35	How may the basal ganglia contribute to auditory categorization and speech perception?. Frontiers in Neuroscience, 2014, 8, 230.	1.4	51
36	Speech perception under adverse conditions: insights from behavioral, computational, and neuroscience research. Frontiers in Systems Neuroscience, 2014, 7, 126.	1.2	56

#	Article	IF	CITATIONS
37	Specificity of dimension-based statistical learning in word recognition Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 1009-1021.	0.7	39
38	Lexically guided phonetic retuning of foreign-accented speech and its generalization Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 539-555.	0.7	63
39	The alluring but misleading analogy between mirror neurons and the motor theory of speech. Behavioral and Brain Sciences, 2014, 37, 204-205.	0.4	0
40	Phonetic category recalibration: What are the categories?. Journal of Phonetics, 2014, 45, 91-105.	0.6	58
41	Spectral information in nonspeech contexts influences children's categorization of ambiguous speech sounds. Journal of Experimental Child Psychology, 2013, 116, 728-737.	0.7	6
42	Supporting research into sound and speech learning through a configurable computer game. , 2013, , .		2
43	The developmental trajectory of children's perception and production of English /r/-/l/. Journal of the Acoustical Society of America, 2013, 133, 4232-4246.	0.5	36
44	Individual differences in cue weights are stable across time: The case of Japanese stop lengths. Journal of the Acoustical Society of America, 2012, 132, 3950-3964.	0.5	62
45	Can native Japanese listeners learn to differentiate /r–l/ on the basis of F3 onset frequency? – CORRIGENDUM. Bilingualism, 2012, 15, 434-435.	1.0	28
46	Can native Japanese listeners learn to differentiate /r–l/ on the basis of F3 onset frequency?. Bilingualism, 2012, 15, 255-274.	1.0	40
47	Listening for the Norm: Adaptive Coding in Speech Categorization. Frontiers in Psychology, 2012, 3, 10.	1.1	35
48	Tuned with a Tune: Talker Normalization via General Auditory Processes. Frontiers in Psychology, 2012, 3, 203.	1.1	63
49	Evidence for the central origin of lexical tone normalization (L). Journal of the Acoustical Society of America, 2011, 129, 1145-1148.	0.5	15
50	Learning Foreign Sounds in an Alien World: Videogame Training Improves Nonâ€Native Speech Categorization. Cognitive Science, 2011, 35, 1390-1405.	0.8	83
51	Predicting native English-like performance by native Japanese speakers. Journal of Phonetics, 2011, 39, 571-584.	0.6	46
52	Psychology of auditory perception. Wiley Interdisciplinary Reviews: Cognitive Science, 2011, 2, 479-489.	1.4	16
53	A standard set of American-English voiced stop-consonant stimuli from morphed natural speech. Speech Communication, 2011, 53, 877-888.	1.6	23
54	Neural Changes Associated with Nonspeech Auditory Category Learning Parallel Those of Speech Category Acquisition. Journal of Cognitive Neuroscience, 2011, 23, 683-698.	1.1	32

#	Article	IF	CITATIONS
55	Word recognition reflects dimension-based statistical learning Journal of Experimental Psychology: Human Perception and Performance, 2011, 37, 1939-1956.	0.7	103
56	America, 2010, 128, 2138-2149.	0.5	6
57	Efficient coding in human auditory perception. Journal of the Acoustical Society of America, 2009, 126, 1312-1320.	0.5	14
58	General perceptual contributions to lexical tone normalization. Journal of the Acoustical Society of America, 2009, 125, 3983-3994.	0.5	51
59	Expertise with Artificial Nonspeech Sounds Recruits Speech-Sensitive Cortical Regions. Journal of Neuroscience, 2009, 29, 5234-5239.	1.7	73
60	Reflections on mirror neurons and speech perception. Trends in Cognitive Sciences, 2009, 13, 110-114.	4.0	226
61	Response to Wilson: What does motor cortex contribute to speech perception?. Trends in Cognitive Sciences, 2009, 13, 330-331.	4.0	24
62	Effects of Attention on the Strength of Lexical Influences on Speech Perception: Behavioral Experiments and Computational Mechanisms. Cognitive Science, 2008, 32, 398-417.	0.8	44
63	Speech Perception Within an Auditory Cognitive Science Framework. Current Directions in Psychological Science, 2008, 17, 42-46.	2.8	82
64	Are there interactive processes in speech perception?. Trends in Cognitive Sciences, 2006, 10, 363-369.	4.0	201
65	Response to McQueen et al.: Theoretical and empirical arguments support interactive processing. Trends in Cognitive Sciences, 2006, 10, 534.	4.0	10
66	Putting phonetic context effects into context: A commentary on Fowler (2006). Perception & Psychophysics, 2006, 68, 178-183.	2.3	82
67	An interactive Hebbian account of lexically guided tuning of speech perception. Psychonomic Bulletin and Review, 2006, 13, 958-965.	1.4	62
68	Cue weighting in auditory categorization: Implications for first and second language acquisition. Journal of the Acoustical Society of America, 2006, 119, 3059-3071.	0.5	216
69	Speech categorization in context: Joint effects of nonspeech and speech precursors. Journal of the Acoustical Society of America, 2006, 119, 4016-4026.	0.5	44
70	The mean matters: Effects of statistically defined nonspeech spectral distributions on speech categorization. Journal of the Acoustical Society of America, 2006, 120, 2801-2817.	0.5	101
71	Computational and behavioral investigations of lexically induced delays in phoneme recognition. Journal of Memory and Language, 2005, 52, 416-435.	1.1	25
72	Perceptual effects of preceding nonspeech rate on temporal properties of speech categories. Perception & Psychophysics, 2005, 67, 939-950.	2.3	47

#	Article	IF	CITATIONS
73	A critical evaluation of visually moderated phonetic context effects. Perception & Psychophysics, 2005, 67, 1102-1112.	2.3	12
74	Incidental categorization of spectrally complex non-invariant auditory stimuli in a computer game task. Journal of the Acoustical Society of America, 2005, 118, 2618-2633.	0.5	63
75	Effects of later-occurring nonlinguistic sounds on speech categorization. Journal of the Acoustical Society of America, 2005, 118, 1701-1710.	0.5	23
76	Temporally Nonadjacent Nonlinguistic Sounds Affect Speech Categorization. Psychological Science, 2005, 16, 305-312.	1.8	137
77	Categorization and discrimination of nonspeech sounds: Differences between steady-state and rapidly-changing acoustic cues. Journal of the Acoustical Society of America, 2004, 116, 1198-1207.	0.5	53
78	Hemispheric asymmetries in children's perception of nonlinguistic human affective sounds. Developmental Science, 2004, 7, 10-18.	1.3	8
79	Auditory discontinuities interact with categorization: Implications for speech perception. Journal of the Acoustical Society of America, 2004, 116, 1763-1773.	0.5	43
80	Speech Perception. Annual Review of Psychology, 2004, 55, 149-179.	9.9	330
81	Preceding phonetic context affects perception of nonspeech (L). Journal of the Acoustical Society of America, 2003, 114, 3036-3039.	0.5	35
82	Central locus for nonspeech context effects on phonetic identification (L). Journal of the Acoustical Society of America, 2003, 113, 53-56.	0.5	36
83	Behavioral examinations of the level of auditory processing of speech context effects. Hearing Research, 2002, 167, 156-169.	0.9	95
84	Influence of fundamental frequency on stop-consonant voicing perception: A case of learned covariation or auditory enhancement?. Journal of the Acoustical Society of America, 2001, 109, 764-774.	0.5	71
85	General Auditory Processes Contribute to Perceptual Accommodation of Coarticulation. Phonetica, 2000, 57, 170-180.	0.3	51
86	Neighboring spectral content influences vowel identification. Journal of the Acoustical Society of America, 2000, 108, 710-722.	0.5	103
87	Role of experience for language-specific functional mappings of vowel sounds. Journal of the Acoustical Society of America, 1998, 104, 3568-3582.	0.5	95
88	Depolarizing the perceptual magnet effect. Journal of the Acoustical Society of America, 1998, 103, 3648-3655.	0.5	49
89	Perceptual compensation for coarticulation by Japanese quail (Coturnix coturnix japonica). Journal of the Acoustical Society of America, 1997, 102, 1134-1140.	0.5	181