W Dalton Dietrich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6574211/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Abstract TP231: Irisin, Elicited By Low Frequency Whole Body Vibration Or Exogenously, Improves Post-Stroke Cognition And Reduces Infarct Volume In Middle-Aged Rats. Stroke, 2022, 53, .	1.0	0
2	Inflammasome-Regulated Pyroptotic Cell Death in Disruption of the Gut-Brain Axis After Stroke. Translational Stroke Research, 2022, 13, 898-912.	2.3	10
3	Inflammatory Biomarkers of Traumatic Brain Injury. Pharmaceuticals, 2022, 15, 660.	1.7	12
4	Cohort study on the differential expression of inflammatory and angiogenic factors in thrombi, cerebral and peripheral plasma following acute large vessel occlusion stroke. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1827-1839.	2.4	7
5	Additive Protective Effects of Delayed Mild Therapeutic Hypothermia and Antioxidants on PC12 Cells Exposed to Oxidative Stress. Therapeutic Hypothermia and Temperature Management, 2021, 11, 77-87.	0.3	5
6	An Exploratory Report on Electrographic Changes in the Cerebral Cortex Following Mild Traumatic Brain Injury with Hyperthermia in the Rat. Therapeutic Hypothermia and Temperature Management, 2021, 11, 10-18.	0.3	0
7	Enoxaparin Attenuates Acute Lung Injury and Inflammasome Activation after Traumatic Brain Injury. Journal of Neurotrauma, 2021, 38, 646-654.	1.7	19
8	Hyperoxia-activated circulating extracellular vesicles induce lung and brain injury in neonatal rats. Scientific Reports, 2021, 11, 8791.	1.6	13
9	The Interdisciplinary Stem Cell Institute's Use of Food and Drug Administration-Expanded Access Guidelines to Provide Experimental Cell Therapy to Patients With Rare Serious Diseases. Frontiers in Cell and Developmental Biology, 2021, 9, 675738.	1.8	1
10	Use of Machine Learning to Re-Assess Patterns of Multivariate Functional Recovery after Fluid Percussion Injury: Operation Brain Trauma Therapy. Journal of Neurotrauma, 2021, 38, 1670-1678.	1.7	5
11	Kollidon VA64 Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. Journal of Neurotrauma, 2021, 38, 2454-2472.	1.7	5
12	Implantable brain–computer interface for neuroprosthetic-enabled volitional hand grasp restoration in spinal cord injury. Brain Communications, 2021, 3, fcab248.	1.5	18
13	Selective Myostatin Inhibition Spares Sublesional Muscle Mass and Myopenia-Related Dysfunction after Severe Spinal Cord Contusion in Mice. Journal of Neurotrauma, 2021, 38, 3440-3455.	1.7	4
14	Circulating extracellular vesicles activate the pyroptosis pathway in the brain following ventilation-induced lung injury. Journal of Neuroinflammation, 2021, 18, 310.	3.1	13
15	Neural-respiratory inflammasome axis in traumatic brain injury. Experimental Neurology, 2020, 323, 113080.	2.0	35
16	Age as a determinant of inflammatory response and survival of glia and axons after human traumatic spinal cord injury. Experimental Neurology, 2020, 332, 113401.	2.0	11
17	The Inflammasome in Times of COVID-19. Frontiers in Immunology, 2020, 11, 583373.	2.2	92
18	IC100: a novel anti-ASC monoclonal antibody improves functional outcomes in an animal model of multiple sclerosis. Journal of Neuroinflammation, 2020, 17, 143.	3.1	41

#	Article	IF	CITATIONS
19	The Inflammasome Adaptor Protein ASC in Mild Cognitive Impairment and Alzheimer's Disease. International Journal of Molecular Sciences, 2020, 21, 4674.	1.8	42
20	Therapeutic hypothermia reduces cortical inflammation associated with utah array implants. Journal of Neural Engineering, 2020, 17, 026035.	1.8	6
21	Netosis and Inflammasomes in Large Vessel Occlusion Thrombi. Frontiers in Pharmacology, 2020, 11, 607287.	1.6	18
22	Neurophysiological Changes in the First Year After Cell Transplantation in Sub-acute Complete Paraplegia. Frontiers in Neurology, 2020, 11, 514181.	1.1	13
23	Clinical and Neurophysiological Changes after Targeted Intrathecal Injections of Bone Marrow Stem Cells in a C3 Tetraplegic Subject. Journal of Neurotrauma, 2019, 36, 500-516.	1.7	17
24	Serum-Based Phospho-Neurofilament-Heavy Protein as Theranostic Biomarker in Three Models of Traumatic Brain Injury: An Operation Brain Trauma Therapy Study. Journal of Neurotrauma, 2019, 36, 348-359.	1.7	26
25	Human Lung Cell Pyroptosis Following Traumatic Brain Injury. Cells, 2019, 8, 69.	1.8	41
26	The role of microglial inflammasome activation in pyroptotic cell death following penetrating traumatic brain injury. Journal of Neuroinflammation, 2019, 16, 27.	3.1	75
27	Neurotherapeutic capacity of P7C3 agents for the treatment of Traumatic Brain Injury. Neuropharmacology, 2019, 145, 268-282.	2.0	26
28	Abstract TP118: Post-Stroke Whole Body Vibration Reduces Frailty in Nicotine Exposed Female Rats. Stroke, 2019, 50, .	1.0	0
29	Operation Brain Trauma Therapy: 2016 Update. Military Medicine, 2018, 183, 303-312.	0.4	41
30	Traumatic Brain Injury-Induced Acute Lung Injury: Evidence for Activation and Inhibition of a Neural-Respiratory-Inflammasome Axis. Journal of Neurotrauma, 2018, 35, 2067-2076.	1.7	68
31	Microglial Inflammasome Activation in Penetrating Ballistic-Like Brain Injury. Journal of Neurotrauma, 2018, 35, 1681-1693.	1.7	66
32	A negative allosteric modulator of PDE4D enhances learning after traumatic brain injury. Neurobiology of Learning and Memory, 2018, 148, 38-49.	1.0	17
33	Investigation of Microbiota Alterations and Intestinal Inflammation Post-Spinal Cord Injury in Rat Model. Journal of Neurotrauma, 2018, 35, 2159-2166.	1.7	71
34	Beneficial Effects of Delayed P7C3-A20 Treatment After Transient MCAO in Rats. Translational Stroke Research, 2018, 9, 146-156.	2.3	19
35	Gadolinium DTPA Enhancement Characteristics of the Rat Sciatic Nerve after Crush Injury at 4.7T. American Journal of Neuroradiology, 2018, 39, 177-183.	1.2	13
36	Hyperthermia and Mild Traumatic Brain Injury: Effects on Inflammation and the Cerebral Vasculature. Journal of Neurotrauma, 2018, 35, 940-952.	1.7	17

#	Article	IF	CITATIONS
37	Inflammasome proteins as biomarkers of traumatic brain injury. PLoS ONE, 2018, 13, e0210128.	1.1	82
38	Inflammasome Proteins in Serum and Serum-Derived Extracellular Vesicles as Biomarkers of Stroke. Frontiers in Molecular Neuroscience, 2018, 11, 309.	1.4	73
39	Whole Body Vibration Therapy after Ischemia Reduces Brain Damage in Reproductively Senescent Female Rats. International Journal of Molecular Sciences, 2018, 19, 2749.	1.8	31
40	Clinical significance and potential translation of neural regeneration and functional recovery in monkeys after spinal cord injury. Science China Life Sciences, 2018, 61, 1291-1292.	2.3	3
41	Pre-Clinical Testing of Therapies for Traumatic Brain Injury. Journal of Neurotrauma, 2018, 35, 2737-2754.	1.7	68
42	Defective Inflammatory Pathways in Never-Treated Depressed Patients Are Associated with Poor Treatment Response. Neuron, 2018, 99, 914-924.e3.	3.8	153
43	Multi-Center Pre-clinical Consortia to Enhance Translation of Therapies and Biomarkers for Traumatic Brain Injury: Operation Brain Trauma Therapy and Beyond. Frontiers in Neurology, 2018, 9, 640.	1.1	42
44	The neuroprotective compound P7C3-A20 promotes neurogenesis and improves cognitive function after ischemic stroke. Experimental Neurology, 2017, 290, 63-73.	2.0	43
45	Safety of Autologous Human Schwann Cell Transplantation in Subacute Thoracic Spinal Cord Injury. Journal of Neurotrauma, 2017, 34, 2950-2963.	1.7	197
46	First human experience with autologous Schwann cells to supplement sciatic nerve repair: report of 2 cases with long-term follow-up. Neurosurgical Focus, 2017, 42, E2.	1.0	33
47	Increased Expression of Epileptiform Spike/Wave Discharges One Year after Mild, Moderate, or Severe Fluid Percussion Brain Injury in Rats. Journal of Neurotrauma, 2017, 34, 2467-2474.	1.7	7
48	Introduction to the Special Issue on Locomotor Rehabilitation after Spinal Cord Injury. Journal of Neurotrauma, 2017, 34, 1711-1712.	1.7	4
49	Human Schwann cells exhibit longâ€ŧerm cell survival, are not tumorigenic and promote repair when transplanted into the contused spinal cord. Glia, 2017, 65, 1278-1301.	2.5	40
50	Automated approach to detecting behavioral states using EEG-DABS. Heliyon, 2017, 3, e00344.	1.4	1
51	New astroglial injury-defined biomarkers for neurotrauma assessment. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3278-3299.	2.4	57
52	Posttraumatic therapeutic hypothermia alters microglial and macrophage polarization toward a beneficial phenotype. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2952-2962.	2.4	64
53	Identifying the Long-Term Role of Inducible Nitric Oxide Synthase after Contusive Spinal Cord Injury Using a Transgenic Mouse Model. International Journal of Molecular Sciences, 2017, 18, 245.	1.8	8
54	Therapeutic hypothermia and targeted temperature management for traumatic brain injury: Experimental and clinical experience. Brain Circulation, 2017, 3, 186.	0.7	40

#	Article	IF	CITATIONS
55	ls temperature an important variable in recovery after mild traumatic brain injury?. F1000Research, 2017, 6, 2031.	0.8	8
56	Therapeutic benefits of phosphodiesterase 4B inhibition after traumatic brain injury. PLoS ONE, 2017, 12, e0178013.	1.1	23
57	Chronic Cognitive Dysfunction after Traumatic Brain Injury Is Improved with a Phosphodiesterase 4B Inhibitor. Journal of Neuroscience, 2016, 36, 7095-7108.	1.7	46
58	Cyclosporine Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. Journal of Neurotrauma, 2016, 33, 553-566.	1.7	44
59	Secondary Changes After Injury and Temperature. Therapeutic Hypothermia and Temperature Management, 2016, 6, 58-62.	0.3	3
60	Hypothermia in Traumatic Brain Injury. Neurosurgery Clinics of North America, 2016, 27, 489-497.	0.8	30
61	A cool approach to reducing electrode-induced trauma: Localized therapeutic hypothermia conserves residual hearing in cochlear implantation. Hearing Research, 2016, 339, 32-39.	0.9	27
62	Differential Neuroproteomic and Systems Biology Analysis of Spinal Cord Injury. Molecular and Cellular Proteomics, 2016, 15, 2379-2395.	2.5	38
63	Exosomeâ€mediated inflammasome signaling after central nervous system injury. Journal of Neurochemistry, 2016, 136, 39-48.	2.1	183
64	Therapeutics targeting the inflammasome after central nervous system injury. Translational Research, 2016, 167, 35-45.	2.2	85
65	Erythropoietin Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. Journal of Neurotrauma, 2016, 33, 538-552.	1.7	51
66	Nicotinamide Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. Journal of Neurotrauma, 2016, 33, 523-537.	1.7	63
67	Simvastatin Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. Journal of Neurotrauma, 2016, 33, 567-580.	1.7	40
68	Synthesis of Findings, Current Investigations, and Future Directions: Operation Brain Trauma Therapy. Journal of Neurotrauma, 2016, 33, 606-614.	1.7	61
69	Insight into Pre-Clinical Models of Traumatic Brain Injury Using Circulating Brain Damage Biomarkers: Operation Brain Trauma Therapy. Journal of Neurotrauma, 2016, 33, 595-605.	1.7	71
70	Levetiracetam Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. Journal of Neurotrauma, 2016, 33, 581-594.	1.7	60
71	Therapeutic hypothermia and targeted temperature management in traumatic brain injury: Clinical challenges for successful translation. Brain Research, 2016, 1640, 94-103.	1.1	71
72	Approach to Modeling, Therapy Evaluation, Drug Selection, and Biomarker Assessments for a Multicenter Pre-Clinical Drug Screening Consortium for Acute Therapies in Severe Traumatic Brain Injury: Operation Brain Trauma Therapy. Journal of Neurotrauma, 2016, 33, 513-522.	1.7	78

#	Article	IF	CITATIONS
73	Protection and Repair After Spinal Cord Injury: Accomplishments and Future Directions. Topics in Spinal Cord Injury Rehabilitation, 2015, 21, 174-187.	0.8	20
74	The Interplay between Cyclic AMP, MAPK, and NF- <i>κ</i> B Pathways in Response to Proinflammatory Signals in Microglia. BioMed Research International, 2015, 2015, 1-18.	0.9	45
75	Female Rats Demonstrate Improved Locomotor Recovery and Greater Preservation of White and Gray Matter after Traumatic Spinal Cord Injury Compared to Males. Journal of Neurotrauma, 2015, 32, 1146-1157.	1.7	59
76	Chaperone-Mediated Autophagy after Traumatic Brain Injury. Journal of Neurotrauma, 2015, 32, 1449-1457.	1.7	35
77	Neural progenitor cell transplantation promotes neuroprotection, enhances hippocampal neurogenesis, and improves cognitive outcomes after traumatic brain injury. Experimental Neurology, 2015, 264, 67-81.	2.0	59
78	Long-Term Consequences of Traumatic Brain Injury: Current Status of Potential Mechanisms of Injury and Neurological Outcomes. Journal of Neurotrauma, 2015, 32, 1834-1848.	1.7	325
79	Commentary Regarding the Recent Publication by Tabakow et al., "Functional Regeneration of Supraspinal Connections in a Patient with Transected Spinal Cord following Transplantation of Bulbar Olfactory Ensheathing Cells with Peripheral Nerve Bridging― Journal of Neurotrauma, 2015, 32, 1176-1178	1.7	8
80	Acute Diagnostic Biomarkers for Spinal Cord Injury: Review of the Literature and Preliminary Research Report. World Neurosurgery, 2015, 83, 867-878.	0.7	91
81	Emergence of cognitive deficits after mild traumatic brain injury due to hyperthermia. Experimental Neurology, 2015, 263, 254-262.	2.0	36
82	Does being female provide a neuroprotective advantage following spinal cord injury?. Neural Regeneration Research, 2015, 10, 1533.	1.6	19
83	Age-Dependent Transcriptome and Proteome Following Transection of Neonatal Spinal Cord of Monodelphis domestica (South American Grey Short-Tailed Opossum). PLoS ONE, 2014, 9, e99080.	1.1	28
84	Pyroptotic Neuronal Cell Death Mediated by the AIM2 Inflammasome. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 621-629.	2.4	227
85	Neuroprotective Efficacy of a Proneurogenic Compound after Traumatic Brain Injury. Journal of Neurotrauma, 2014, 31, 476-486.	1.7	77
86	The Potential Utility of Blood-Derived Biochemical Markers as Indicators of Early Clinical Trends Following Severe Traumatic Brain Injury. World Neurosurgery, 2014, 81, 151-158.	0.7	30
87	Activation and Regulation of Cellular Inflammasomes: Gaps in Our Knowledge for Central Nervous System Injury. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 369-375.	2.4	274
88	Intraoperative Temperature Management. Therapeutic Hypothermia and Temperature Management, 2014, 4, 67-71.	0.3	2
89	Therapeutic Hypothermia in Post Cardiac Arrest. Therapeutic Hypothermia and Temperature Management, 2013, 3, 161-165.	0.3	2
90	MicroRNA overexpression increases cortical neuronal vulnerability to injury. Brain Research, 2013, 1533, 122-130.	1.1	52

6

#	Article	IF	CITATIONS
91	Preconditioning for Traumatic Brain Injury. Translational Stroke Research, 2013, 4, 25-39.	2.3	36
92	Effects of early rolipram treatment on histopathological outcome after controlled cortical impact injury in mice. Neuroscience Letters, 2013, 532, 1-6.	1.0	32
93	Genetically modified mesenchymal stem cells (MSCs) promote axonal regeneration and prevent hypersensitivity after spinal cord injury. Experimental Neurology, 2013, 248, 369-380.	2.0	61
94	Involvement of the inflammasome in abnormal semen quality of men with spinal cord injury. Fertility and Sterility, 2013, 99, 118-124.e2.	0.5	42
95	Neuroprotective effect of preoperatively induced mild hypothermia as determined by biomarkers and histopathological estimation in a rat subdural hematoma decompression model. Journal of Neurosurgery, 2013, 118, 370-380.	0.9	43
96	Systemic hypothermia in acute cervical spinal cord injury: a case-controlled study. Spinal Cord, 2013, 51, 395-400.	0.9	107
97	Hypoxia Alters MicroRNA Expression in Rat Cortical Pericytes. MicroRNA (Shariqah, United Arab) Tj ETQq1 1 0.784	1314 rgBT 0.6	/gyerlock 1(
98	Effects of Therapeutic Hypothermia on Inflammasome Signaling after Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1939-1947.	2.4	75
99	Cooling Strategies Targeting Trauma. Therapeutic Hypothermia and Temperature Management, 2012, 2, 162-165.	0.3	1
100	Mild Hyperthermia Worsens the Neuropathological Damage Associated with Mild Traumatic Brain Injury in Rats. Journal of Neurotrauma, 2012, 29, 313-321.	1.7	51
101	ICU and Intra-Operative Temperature Management. Therapeutic Hypothermia and Temperature Management, 2012, 2, 2-5.	0.3	0
102	Temperature Management in Neurological and Neurosurgical Intensive Care Unit. Therapeutic Hypothermia and Temperature Management, 2012, 2, 104-108.	0.3	0
103	The Effects of Posttraumatic Hypothermia on Diffuse Axonal Injury Following Parasagittal Fluid Percussion Brain Injury in Rats. Therapeutic Hypothermia and Temperature Management, 2012, 2, 14-23.	0.3	17
104	Inflammasome proteins in cerebrospinal fluid of brain-injured patients as biomarkers of functional ot Neurosurgery, 2012, 117, 1119-1125.	0.9	142
105	Temporal Profile of Cerebrospinal Fluid, Plasma, and Brain Interleukin-6 After Normothermic Fluid-Percussion Brain Injury: Effect of Secondary Hypoxia. Therapeutic Hypothermia and Temperature Management, 2012, 2, 167-175.	0.3	9
106	Therapeutic hypothermia for acute severe spinal cord injury. Critical Care Medicine, 2012, 40, 691-692.	0.4	20
107	Acute Molecular Perturbation of Inducible Nitric Oxide Synthase with an Antisense Approach Enhances Neuronal Preservation and Functional Recovery after Contusive Spinal Cord Injury. Journal of Neurotrauma, 2012, 29, 2244-2249.	1.7	22
108	Phosphodiesterase isoformâ€specific expression induced by traumatic brain injury. Journal of Neurochemistry, 2012, 123, 1019-1029.	2.1	24

#	Article	IF	CITATIONS
109	Proinflammatory cytokine regulation of cyclic AMPâ€phosphodiesterase 4 signaling in microglia <i>in vitro</i> and following CNS injury. Glia, 2012, 60, 1839-1859.	2.5	74
110	A reassessment of P2X7 receptor inhibition as a neuroprotective strategy in rat models of contusion injury. Experimental Neurology, 2012, 233, 687-692.	2.0	30
111	Replication and reproducibility in spinal cord injury research. Experimental Neurology, 2012, 233, 597-605.	2.0	157
112	Posttraumatic hypothermia increases doublecortin expressing neurons in the dentate gyrus after traumatic brain injury in the rat. Experimental Neurology, 2012, 233, 821-828.	2.0	49
113	Trauma of the Nervous System. , 2012, , 931-941.		0
114	Oligodendrocyte vulnerability following traumatic brain injury in rats. Neuroscience Letters, 2011, 499, 143-148.	1.0	69
115	A Novel Multicenter Preclinical Drug Screening and Biomarker Consortium for Experimental Traumatic Brain Injury: Operation Brain Trauma Therapy. Journal of Trauma, 2011, 71, S15-S24.	2.3	46
116	Therapeutic hypothermia alters microRNA responses to traumatic brain injury in rats. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 1897-1907.	2.4	89
117	Hypothermic Treatment for Acute Spinal Cord Injury. Neurotherapeutics, 2011, 8, 229-239.	2.1	88
118	Oligodendrocyte Vulnerability Following Traumatic Brain Injury in Rats: Effect of Moderate Hypothermia. Therapeutic Hypothermia and Temperature Management, 2011, 1, 43-51.	0.3	27
119	Post-Traumatic Seizures Exacerbate Histopathological Damage after Fluid-Percussion Brain Injury. Journal of Neurotrauma, 2011, 28, 35-42.	1.7	46
120	The Use of Hypothermia Therapy in Traumatic Ischemic/Reperfusional Brain Injury: Review of the Literatures. Therapeutic Hypothermia and Temperature Management, 2011, 1, 185-192.	0.3	23
121	Temperature Management in the Neurological and Neurosurgical ICU. Therapeutic Hypothermia and Temperature Management, 2011, 1, 117-122.	0.3	0
122	Neuromonitoring in Traumatic Brain-injured Patients : From the Viewpoint of Treatment Guidelines(<special issue="">Traumatic Head Injury Update). Japanese Journal of Neurosurgery, 2011, 20, 864-872.</special>	0.0	0
123	The Use of Systemic Hypothermia for the Treatment of an Acute Cervical Spinal Cord Injury in a Professional Football Player. Spine, 2010, 35, E57-E62.	1.0	63
124	Clinical Outcomes Using Modest Intravascular Hypothermia After Acute Cervical Spinal Cord Injury. Neurosurgery, 2010, 66, 670-677.	0.6	211
125	The Evidence for Hypothermia as a Neuroprotectant in Traumatic Brain Injury. Neurotherapeutics, 2010, 7, 43-50.	2.1	126
126	Postâ€ŧraumatic seizure susceptibility is attenuated by hypothermia therapy. European Journal of Neuroscience, 2010, 32, 1912-1920.	1.2	72

#	Article	IF	CITATIONS
127	Protection in Animal Models of Brain and Spinal Cord Injury with Mild to Moderate Hypothermia. Journal of Neurotrauma, 2009, 26, 301-312.	1.7	128
128	Introduction. Journal of Neurotrauma, 2009, 26, 297-298.	1.7	6
129	Clinical Application of Modest Hypothermia after Spinal Cord Injury. Journal of Neurotrauma, 2009, 26, 407-415.	1.7	152
130	Alterations in Blood-Brain Barrier Permeability to Large and Small Molecules and Leukocyte Accumulation after Traumatic Brain Injury: Effects of Post-Traumatic Hypothermia. Journal of Neurotrauma, 2009, 26, 1123-1134.	1.7	144
131	A Novel Protein Complex in Membrane Rafts Linking the NR2B Glutamate Receptor and Autophagy Is Disrupted following Traumatic Brain Injury. Journal of Neurotrauma, 2009, 26, 703-720.	1.7	49
132	Systemic hypothermia improves histological and functional outcome after cervical spinal cord contusion in rats. Journal of Comparative Neurology, 2009, 514, 433-448.	0.9	142
133	Therapeutic Neutralization of the NLRP1 Inflammasome Reduces the Innate Immune Response and Improves Histopathology after Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 1251-1261.	2.4	272
134	Deficits in ERK and CREB activation in the hippocampus after traumatic brain injury. Neuroscience Letters, 2009, 459, 52-56.	1.0	69
135	Traumatic Injury Activates MAP Kinases in Astrocytes: Mechanisms of Hypothermia and Hyperthermia. Journal of Neurotrauma, 2009, 26, 1535-1545.	1.7	64
136	Therapeutic hypothermia for spinal cord injury. Critical Care Medicine, 2009, 37, S238-S242.	0.4	66
137	Effects of Moderate Hypothermia on Constitutive and Inducible Nitric Oxide Synthase Activities After Traumatic Brain Injury in the Rat. Journal of Neurochemistry, 2008, 72, 2047-2052.	2.1	67
138	A re-assessment of minocycline as a neuroprotective agent in a rat spinal cord contusion model. Brain Research, 2008, 1243, 146-151.	1.1	85
139	Systemic inflammation exacerbates behavioral and histopathological consequences of isolated traumatic brain injury in rats. Experimental Neurology, 2008, 211, 283-291.	2.0	90
140	A re-assessment of erythropoietin as a neuroprotective agent following rat spinal cord compression or contusion injury. Experimental Neurology, 2008, 213, 129-136.	2.0	47
141	Progressive damage after brain and spinal cord injury: pathomechanisms and treatment strategies. Progress in Brain Research, 2007, 161, 125-141.	0.9	290
142	Modulation of the cAMP signaling pathway after traumatic brain injury. Experimental Neurology, 2007, 208, 145-158.	2.0	127
143	Hyperthermia and central nervous system injury. Progress in Brain Research, 2007, 162, 201-217.	0.9	87
144	Alterations in Mammalian Target of Rapamycin Signaling Pathways after Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 939-949.	2.4	89

#	Article	IF	CITATIONS
145	Hypothermia treatment potentiates ERK1/2 activation after traumatic brain injury. European Journal of Neuroscience, 2007, 26, 810-819.	1.2	52
146	Characterization of a thromboembolic photochemical model of repeated stroke in mice. Journal of Neuroscience Methods, 2007, 162, 244-254.	1.3	30
147	Widespread cellular proliferation and focal neurogenesis after traumatic brain injury in the rat. Restorative Neurology and Neuroscience, 2007, 25, 65-76.	0.4	89
148	Therapeutic hypothermia modulates TNFR1 signaling in the traumatized brain via early transient activation of the JNK pathway and suppression of XIAP cleavage. European Journal of Neuroscience, 2006, 24, 2283-2290.	1.2	70
149	Therapeutic Hypothermia for Acute Stroke. International Journal of Stroke, 2006, 1, 9-19.	2.9	91
150	Activation of Calcium/Calmodulin-Dependent Protein Kinases after Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 1507-1518.	2.4	64
151	The cellular inflammatory response in human spinal cords after injury. Brain, 2006, 129, 3249-3269.	3.7	706
152	Influence of Therapeutic Hypothermia on Matrix Metalloproteinase Activity after Traumatic Brain Injury in Rats. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, 1505-1516.	2.4	110
153	Spinal Cord Ischemia and Trauma. , 2005, , 101-118.		9
154	The effect of therapeutic hypothermia on the expression of inflammatory response genes following moderate traumatic brain injury in the rat. Molecular Brain Research, 2005, 138, 124-134.	2.5	88
155	Hypothermia decreases the protein levels of TNF family members and their signaling intermediates after traumatic brain injury. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S471-S471.	2.4	0
156	The Effects of Early Post-Traumatic Hyperthermia in Female and Ovariectomized Rats. Journal of Neurotrauma, 2004, 21, 842-853.	1.7	52
157	Tumor Necrosis Factor Receptor 1 and Its Signaling Intermediates Are Recruited to Lipid Rafts in the Traumatized Brain. Journal of Neuroscience, 2004, 24, 11010-11016.	1.7	73
158	Pathophysiology of Cerebral Ischemia and Brain Trauma: Similarities and Differences. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 133-150.	2.4	551
159	Changes in TrkB–ERK1/2–CREB/Elk-1 Pathways in Hippocampal Mossy Fiber Organization after Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 934-943.	2.4	61
160	The beneficial effect of mild hypothermia in a rat model of repeated thromboembolic insults. Acta Neuropathologica, 2004, 107, 413-420.	3.9	14
161	Tumor Necrosis Factor α Expression and Protein Levels after Fluid Percussion Injury in Rats: The Effect of Injury Severity and Brain Temperature. Neurosurgery, 2004, 55, 416-425.	0.6	109
162	The search for neuroprotective strategies in stroke. American Journal of Neuroradiology, 2004, 25, 181-94.	1.2	45

#	Article	IF	CITATIONS
163	Two effective behavioral tasks for evaluating sensorimotor dysfunction following traumatic brain injury in mice. Journal of Neuroscience Methods, 2003, 129, 87-93.	1.3	129
164	The importance of gender on the beneficial effects of posttraumatic hypothermia. Experimental Neurology, 2003, 184, 1017-1026.	2.0	58
165	Confirming an experimental therapy prior to transfer to humans: What is the ideal?. Journal of Rehabilitation Research and Development, 2003, 40, 63.	1.6	14
166	New Research in the Field of Stroke: Therapeutic Hypothermia after Cardiac Arrest. Stroke, 2003, 34, 1051-1053.	1.0	28
167	Temporal and Segmental Distribution of Constitutive and Inducible Nitric Oxide Synthases after Traumatic Spinal Cord Injury: Effect of Aminoguanidine Treatment. Journal of Neurotrauma, 2002, 19, 639-651.	1.7	81
168	The effect of brain temperature on hemoglobin extravasation after traumatic brain injury. Journal of Neurosurgery, 2002, 97, 945-953.	0.9	58
169	Interleukin-1β Messenger Ribonucleic Acid and Protein Levels after Fluid-Percussion Brain Injury in Rats: Importance of Injury Severity and Brain Temperature. Neurosurgery, 2002, 51, 195-203.	0.6	145
170	Targeting the host inflammatory response in traumatic spinal cord injury. Current Opinion in Neurology, 2002, 15, 355-360.	1.8	193
171	Temporal Profile of Enhanced Vulnerability of the Postthrombotic Brain to Secondary Embolic Events. Stroke, 2002, 33, 1113-1119.	1.0	15
172	Clinical Trials in Head Injury. Journal of Neurotrauma, 2002, 19, 503-557.	1.7	868
173	Endothelial Nitric Oxide Synthase Pathophysiology after Nonocclusive Common Carotid Artery Thrombosis in Rats. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 612-619.	2.4	16
174	Role of nitric oxide in the cerebrovascular and thermoregulatory response to interleukin-1β. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H1448-H1453.	1.5	22
175	Detrimental Effects of Systemic Hyperthermia on Locomotor Function and Histopathological Outcome after Traumatic Spinal Cord Injury in the Rat. Neurosurgery, 2001, 49, 152-159.	0.6	65
176	Posttraumatic hypothermia is neuroprotective in a model of traumatic brain injury complicated by a secondary hypoxic insult. Critical Care Medicine, 2001, 29, 2060-2066.	0.4	89
177	Detrimental Effects of Systemic Hyperthermia on Locomotor Function and Histopathological Outcome after Traumatic Spinal Cord Injury in the Rat. Neurosurgery, 2001, 49, 152-159.	0.6	19
178	Apoptotic and Antiapoptotic Mechanisms after Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2001, 21, 1189-1198.	2.4	164
179	Apoptotic and Anti-Apoptotic Mechanisms Following Spinal Cord Injury. Journal of Neuropathology and Experimental Neurology, 2001, 60, 422-429.	0.9	135
180	Neuropathological Protection after Traumatic Brain Injury in Intact Female Rats Versus Males or Ovariectomized Females. Journal of Neurotrauma, 2001, 18, 891-900.	1.7	183

#	Article	IF	CITATIONS
181	Temperature Changes and Ischemic Stroke. , 2001, , 45-55.		2
182	Beneficial effects of modest systemic hypothermia on locomotor function and histopathological damage following contusion-induced spinal cord injury in rats. Journal of Neurosurgery: Spine, 2000, 93, 85-93.	0.9	64
183	Thromboembolic Events Lead to Cortical Spreading Depression and Expression of c-fos, Brain-Derived Neurotrophic Factor, Clial Fibrillary Acidic Protein, and Heat Shock Protein 70 mRNA in Rats. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 103-111.	2.4	35
184	Importance of Posttraumatic Hypothermia and Hyperthermia on the Inflammatory Response after Fluid Percussion Brain Injury: Biochemical and Immunocytochemical Studies. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 531-542.	2.4	198
185	Posttraumatic Hypothermia Reduces Polymorphonuclear Leukocyte Accumulation Following Spinal Cord Injury in Rats. Journal of Neurotrauma, 2000, 17, 321-332.	1.7	122
186	Early Treatment with a Novel Inhibitor of Lipid Peroxidation (LY341122) Improves Histopathological Outcome after Moderate Fluid Percussion Brain Injury in Rats. Neurosurgery, 1999, 45, 601-608.	0.6	36
187	Systemically Administered Interleukin-10 Reduces Tumor Necrosis Factor-Alpha Production and Significantly Improves Functional Recovery Following Traumatic Spinal Cord Injury in Rats. Journal of Neurotrauma, 1999, 16, 851-863.	1.7	378
188	Delayed Hypovolemic Hypotension Exacerbates the Hemodynamic and Histopathologic Consequences of Thromboembolic Stroke in Rats. Journal of Cerebral Blood Flow and Metabolism, 1999, 19, 918-926.	2.4	10
189	The effect of rapid preconditioning on the microglial, astrocytic and neuronal consequences of global cerebral ischemia. Acta Neuropathologica, 1999, 97, 495-501.	3.9	49
190	Sequential analysis of subacute and chronic neuronal, astrocytic and microglial alterations after transient global ischemia in rats. Acta Neuropathologica, 1998, 95, 511-523.	3.9	55
191	Posttraumatic Cerebral Ischemia after Fluid Percussion Brain Injury: An Autoradiographic and Histopathological Study in Rats. Neurosurgery, 1998, 43, 585-593.	0.6	96
192	Inducible Nitric Oxide Synthase Expression after Traumatic Brain Injury and Neuroprotection with Aminoguanidine Treatment in Rats. Neurosurgery, 1998, 43, 1427-1436.	0.6	166
193	Hyperthermia delayed by 24 hours aggravates neuronal damage in rat hippocampus following global ischemia. Neurology, 1997, 48, 768-773.	1.5	172
194	Temporal and Regional Patterns of Axonal Damage following Traumatic Brain Injury. Journal of Neuropathology and Experimental Neurology, 1997, 56, 1132-1141.	0.9	209
195	Rapid Preconditioning Protects Rats against Ischemic Neuronal Damage after 3 but Not 7 Days of Reperfusion following Global Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 1997, 17, 175-182.	2.4	202
196	Chronic histopathological consequences of fluid-percussion brain injury in rats: effects of post-traumatic hypothermia. Acta Neuropathologica, 1997, 93, 190-199.	3.9	177
197	Delayed Posttraumatic Brain Hyperthermia Worsens Outcome after Fluid Percussion Brain Injury: A Light and Electron Microscopic Study in Rats. Neurosurgery, 1996, 38, 533-541.	0.6	176
198	Early endothelial damage and leukocyte accumulation in piglet brains following cardiac arrest. Acta Neuropathologica, 1996, 92, 430-430.	3.9	0

#	Article	IF	CITATIONS
199	Reduction of platelet thrombi and emboli by L-arginine during cardiopulmonary bypass in a pig model. Journal of Thrombosis and Thrombolysis, 1996, 3, 343-360.	1.0	2
200	Delayed Postischemic Hyperthermia in Awake Rats Worsens the Histopathological Outcome of Transient Focal Cerebral Ischemia. Stroke, 1996, 27, 2274-2281.	1.0	201
201	Delayed Posttraumatic Brain Hyperthermia Worsens Outcome after Fluid Percussion Brain Injury: A Light and Electron Microscopic Study in Rats. Neurosurgery, 1996, 38, 533-541.	0.6	115
202	Effect of Delayed MK-801 (Dizocilpine) Treatment with or without Immediate Postischemic Hypothermia on Chronic Neuronal Survival after Global Forebrain Ischemia in Rats. Journal of Cerebral Blood Flow and Metabolism, 1995, 15, 960-968.	2.4	107
203	Posttraumatic Brain Hypothermia Provides Protection from Sensorimotor and Cognitive Behavioral Deficits. Journal of Neurotrauma, 1995, 12, 289-298.	1.7	149
204	Glutamate Release and Free Radical Production Following Brain Injury: Effects of Posttraumatic Hypothermia. Journal of Neurochemistry, 1995, 65, 1704-1711.	2.1	521
205	Early endothelial damage and leukocyte accumulation in piglet brains following cardiac arrest. Acta Neuropathologica, 1995, 90, 582-591.	3.9	3
206	Early Microvascular and Neuronal Consequences of Traumatic Brain Injury: A Light and Electron Microscopic Study in Rats. Journal of Neurotrauma, 1994, 11, 289-301.	1.7	338
207	Post-traumatic brain hypothermia reduces histopathological damage following concussive brain injury in the rat. Acta Neuropathologica, 1994, 87, 250-258.	3.9	287
208	Post-traumatic brain hypothermia reduces histopathological damage following concussive brain injury in the rat. Acta Neuropathologica, 1994, 87, 250-258.	3.9	76
209	Intraischemic but Not Postischemic Brain Hypothermia Protects Chronically following Global Forebrain Ischemia in Rats. Journal of Cerebral Blood Flow and Metabolism, 1993, 13, 541-549.	2.4	514
210	Microvascular and Neuronal Consequences of Common Carotid Artery Thrombosis and Platelet Embolization in Rats. Journal of Neuropathology and Experimental Neurology, 1993, 52, 351-360.	0.9	44
211	The Significance of Brain Temperature in Focal Cerebral Ischemia: Histopathological Consequences of Middle Cerebral Artery Occlusion in the Rat. Journal of Cerebral Blood Flow and Metabolism, 1992, 12, 380-389.	2.4	355
212	Differing Neurochemical and Morphological Sequelae of Global Ischemia: Comparison of Single―and Multipleâ€Insult Paradigms. Journal of Neurochemistry, 1992, 59, 2213-2223.	2.1	60
213	Comparative Effect of Transient Global Ischemia on Extracellular Levels of Glutamate, Glycine, and ?-Aminobutyric Acid in Vulnerable and Nonvulnerable Brain Regions in the Rat. Journal of Neurochemistry, 1991, 57, 470-478.	2.1	293
214	Hemodynamic Consequences of Common Carotid Artery Thrombosis and Thrombogenically Activated Blood in Rats. Journal of Cerebral Blood Flow and Metabolism, 1991, 11, 957-965.	2.4	39
215	The Importance of Brain Temperature in Alterations of the Blood-Brain Barrier Following Cerebral Ischemia. Journal of Neuropathology and Experimental Neurology, 1990, 49, 486-497.	0.9	346
216	A new model of embolic stroke produced by photochemical injury to the carotid artery in the rat. Annals of Neurology, 1988, 23, 251-257.	2.8	74

#	Article	IF	CITATIONS
217	Effect of Ischemia on the In Vivo Release of Striatal Dopamine, Glutamate, and ?-Aminobutyric Acid Studied by Intracerebral Microdialysis. Journal of Neurochemistry, 1988, 51, 1455-1464.	2.1	705
218	Small Differences in Intraischemic Brain Temperature Critically Determine the Extent of Ischemic Neuronal Injury. Journal of Cerebral Blood Flow and Metabolism, 1987, 7, 729-738.	2.4	1,818
219	Induction of reproducible brain infarction by photochemically initiated thrombosis. Annals of Neurology, 1985, 17, 497-504.	2.8	1,013
220	Temperature management and therapeutic hypothermia for the treatment of spinal cord injury. , 0, , 314-321.		0