
Ylva Engström

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6573747/publications.pdf Version: 2024-02-01

Υινα ΕΝΟςτράω

#	Article	IF	CITATIONS
1	Dif, a dorsal-related gene that mediates an immune response in Drosophila. Cell, 1993, 75, 753-763.	28.9	437
2	Caspase-mediated processing of the Drosophila NF-ÂB factor Relish. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5991-5996.	7.1	294
3	Activation of the <i>Drosophila</i> NFâ€ÎºB factor Relish by rapid endoproteolytic cleavage. EMBO Reports, 2000, 1, 347-352.	4.5	278
4	κB-like Motifs Regulate the Induction of Immune Genes in Drosophila. Journal of Molecular Biology, 1993, 232, 327-333.	4.2	221
5	Cooperative control of Drosophila immune responses by the JNK and NF-κB signaling pathways. EMBO Journal, 2006, 25, 3068-3077.	7.8	158
6	Induction and regulation of antimicrobial peptides in Drosophila. Developmental and Comparative Immunology, 1999, 23, 345-358.	2.3	144
7	Signals from the IL-1 Receptor Homolog, Toll, Can Activate an Immune Response in a Drosophila Hemocyte Cell Line. Biochemical and Biophysical Research Communications, 1995, 209, 111-116.	2.1	118
8	A multilayered defense against infection: combinatorial control of insect immune genes. Trends in Genetics, 2007, 23, 342-349.	6.7	116
9	The <i>imd</i> gene is required for local <i>Cecropin</i> expression in <i>Drosophila</i> barrier epithelia. EMBO Reports, 2001, 2, 239-243.	4.5	109
10	Serpent regulates Drosophila immunity genes in the larval fat body through an essential GATA motif. EMBO Journal, 1999, 18, 4013-4022.	7.8	106
11	Genome-Wide RNA Interference in <i>Drosophila</i> Cells Identifies G Protein-Coupled Receptor Kinase 2 as a Conserved Regulator of NF-κB Signaling. Journal of Immunology, 2010, 184, 6188-6198.	0.8	88
12	Immune Response in the Barrier Epithelia: Lessons from the Fruit Fly <i>Drosophila melanogaster</i> . Journal of Innate Immunity, 2012, 4, 273-283.	3.8	85
13	Adjacent GATA and kappa B-like motifs regulate the expression of a Drosophila immune gene. Nucleic Acids Research, 1997, 25, 1233-1239.	14.5	75
14	The GATA factor Serpent is required for the onset of the humoral immune response in Drosophila embryos. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 3884-3888.	7.1	56
15	Intersection of phosphate transport, oxidative stress and TOR signalling in Candida albicans virulence. PLoS Pathogens, 2018, 14, e1007076.	4.7	54
16	The Oct1 homolog Nubbin is a repressor of NF-l̂ºB-dependent immune gene expression that increases the tolerance to gut microbiota. BMC Biology, 2013, 11, 99.	3.8	48
17	Drosophila as a Model for Human Diseases—Focus on Innate Immunity in Barrier Epithelia. Current Topics in Developmental Biology, 2017, 121, 29-81.	2.2	46
18	The POU Transcription Factor Drifter/Ventral veinless Regulates Expression of <i>Drosophila</i> Immune Defense Genes. Molecular and Cellular Biology, 2010, 30, 3672-3684.	2.3	39

Ylva Engström

#	Article	IF	CITATIONS
19	Regulation of the <i>Drosophila linâ€41</i> homologue <i>dappled</i> by <i>letâ€7</i> reveals conservation of a regulatory mechanism within the LINâ€41 subclade. Developmental Dynamics, 2008, 237, 196-208.	1.8	38
20	The POU/Oct Transcription Factor Pdm1/nub Is Necessary for a Beneficial Gut Microbiota and Normal Lifespan of <i>Drosophila</i> . Journal of Innate Immunity, 2016, 8, 412-426.	3.8	31
21	Wild-Type Drosophila melanogaster as a Model Host to Analyze Nitrogen Source Dependent Virulence of Candida albicans. PLoS ONE, 2011, 6, e27434.	2.5	30
22	Analysis of Signal-dependent Changes in the Proteome of Drosophila Blood Cells During an Immune Response. Molecular and Cellular Proteomics, 2004, 3, 796-808.	3.8	26
23	Proteomics of the Drosophila immune response. Trends in Biotechnology, 2004, 22, 600-605.	9.3	26
24	Different cellular distribution of thioredoxin and subunit M1 of ribonucleotide reductase in rat tissues. Experimental Cell Research, 1986, 163, 363-369.	2.6	24
25	Enteric Bacteria Counteract Lipopolysaccharide Induction of Antimicrobial Peptide Genes. Journal of Immunology, 2001, 167, 6920-6923.	0.8	24
26	Functional Characterization of a Novel Promoter Element Required for an Innate Immune Response in Drosophila. Molecular and Cellular Biology, 2003, 23, 8272-8281.	2.3	24
27	Dif and cactus are colocalized in the larval nervous system ofDrosophila melanogaster. Journal of Neurobiology, 1999, 38, 16-26.	3.6	23
28	Control of Hox transcription factor concentration and cell-to-cell variability by an auto-regulatory switch. Development (Cambridge), 2019, 146, .	2.5	23
29	Nubbin isoform antagonism governs Drosophila intestinal immune homeostasis. PLoS Pathogens, 2018, 14, e1006936.	4.7	22
30	Monoclonal Antibodies Against Mammalian Ribonucleotide Reductase Acta Chemica Scandinavica, 1982, 36b, 343-344.	0.7	20
31	Involvement of Rel factors in the expression of antimicrobial peptide genes in amphibia. FEBS Journal, 2001, 268, 443-449.	0.2	19
32	Spatial and temporal expression of an Antennapedia/lac Z gene construct integrated into the endogenous Antennapedia gene of Drosophila melanogaster. Roux's Archives of Developmental Biology, 1992, 201, 65-80.	1.2	16
33	The POU/Oct Transcription Factor Nubbin Controls the Balance of Intestinal Stem Cell Maintenance and Differentiation by Isoform-Specific Regulation. Stem Cell Reports, 2018, 10, 1565-1578.	4.8	16
34	Bab2 Functions as an Ecdysone-Responsive Transcriptional Repressor during Drosophila Development. Cell Reports, 2020, 32, 107972.	6.4	15
35	Isolation of regulators of Drosophila immune defense genes by a double interaction screen in yeast. Insect Biochemistry and Molecular Biology, 2007, 37, 202-212.	2.7	11
36	Regulation of immune and tissue homeostasis by Drosophila POU factors. Insect Biochemistry and Molecular Biology, 2019, 109, 24-30.	2.7	9

Ylva Engström

#	Article	IF	CITATIONS
37	Activation of an innate immune response in large numbers of permeabilized Drosophila embryos. Developmental and Comparative Immunology, 2011, 35, 263-266.	2.3	4
38	Cell cycle regulators control stemness and differentiation. BioEssays, 2021, 43, e2100123.	2.5	4
39	Stop codon readthrough alters the activity of a POU/Oct transcription factor during Drosophila development. BMC Biology, 2021, 19, 185.	3.8	4
40	LPS-inducible expression of amphibian genes coding for antimicrobial peptides in the insect mbn-2 cell line. Biochemical Society Transactions, 2000, 28, A444-A444.	3.4	0