Xing Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6573426/publications.pdf Version: 2024-02-01

XINC CHEN

#	Article	IF	CITATIONS
1	Low-field NMR study of heat-induced gelation of pork myofibrillar proteins and its relationship with microstructural characteristics. Food Research International, 2014, 62, 1175-1182.	6.2	298
2	Effect of microbial transglutaminase on NMR relaxometry and microstructure of pork myofibrillar protein gel. European Food Research and Technology, 2009, 228, 665-670.	3.3	157
3	Effects of high pressure processing on the thermal gelling properties of chicken breast myosin containing κ-carrageenan. Food Hydrocolloids, 2014, 40, 262-272.	10.7	131
4	Potential of high pressure homogenization to solubilize chicken breast myofibrillar proteins in water. Innovative Food Science and Emerging Technologies, 2016, 33, 170-179.	5.6	131
5	The mechanism of high pressure-induced gels of rabbit myosin. Innovative Food Science and Emerging Technologies, 2012, 16, 41-46.	5.6	130
6	Structural modification by high-pressure homogenization for improved functional properties of freeze-dried myofibrillar proteins powder. Food Research International, 2017, 100, 193-200.	6.2	124
7	Conformational changes induced by high-pressure homogenization inhibit myosin filament formation in low ionic strength solutions. Food Research International, 2016, 85, 1-9.	6.2	110
8	Rheological behavior, conformational changes and interactions of water-soluble myofibrillar protein during heating. Food Hydrocolloids, 2018, 77, 524-533.	10.7	101
9	Preparation, characterization, physicochemical property and potential application of porous starch: A review. International Journal of Biological Macromolecules, 2020, 148, 1169-1181.	7.5	101
10	Solubilisation of myosin in a solution of low ionic strength l -histidine: Significance of the imidazole ring. Food Chemistry, 2016, 196, 42-49.	8.2	100
11	Solubilization of myofibrillar proteins in water or low ionic strength media: Classical techniques, basic principles, and novel functionalities. Critical Reviews in Food Science and Nutrition, 2017, 57, 3260-3280.	10.3	96
12	In vitro protein digestibility of pork products is affected by the method of processing. Food Research International, 2017, 92, 88-94.	6.2	92
13	Effect of Cooking on <i>in Vitro</i> Digestion of Pork Proteins: A Peptidomic Perspective. Journal of Agricultural and Food Chemistry, 2015, 63, 250-261.	5.2	88
14	Dose-dependent effects of rosmarinic acid on formation of oxidatively stressed myofibrillar protein emulsion gel at different NaCl concentrations. Food Chemistry, 2018, 243, 50-57.	8.2	88
15	Emulsifying Properties of Oxidatively Stressed Myofibrillar Protein Emulsion Gels Prepared with (â°')-Epigallocatechin-3-gallate and NaCl. Journal of Agricultural and Food Chemistry, 2017, 65, 2816-2826.	5.2	86
16	Effect of sodium alginate with three molecular weight forms on the water holding capacity of chicken breast myosin gel. Food Chemistry, 2018, 239, 1134-1142.	8.2	81
17	Structural modification of myofibrillar proteins by high-pressure processing for functionally improved, value-added, and healthy muscle gelled foods. Critical Reviews in Food Science and Nutrition, 2018, 58, 2981-3003.	10.3	80
18	Enhanced heat stability and antioxidant activity of myofibrillar protein-dextran conjugate by the covalent adduction of polyphenols. Food Chemistry, 2021, 352, 129376.	8.2	78

#	Article	IF	CITATIONS
19	Modification of myofibrillar protein via glycation: Physicochemical characterization, rheological behavior and solubility property. Food Hydrocolloids, 2020, 105, 105852.	10.7	77
20	Description of a Natural Infection with Decapod Iridescent Virus 1 in Farmed Giant Freshwater Prawn, Macrobrachium rosenbergii. Viruses, 2019, 11, 354.	3.3	74
21	Effects of high-intensity ultrasound, high-pressure processing, and high-pressure homogenization on the physicochemical and functional properties of myofibrillar proteins. Innovative Food Science and Emerging Technologies, 2018, 45, 354-360.	5.6	73
22	Chemical Stability of Ascorbic Acid Integrated into Commercial Products: A Review on Bioactivity and Delivery Technology. Antioxidants, 2022, 11, 153.	5.1	73
23	Influence of Various Levels of Flaxseed Gum Addition on the Waterâ€Holding Capacities of Heatâ€Induced Porcine Myofibrillar Protein. Journal of Food Science, 2011, 76, C472-8.	3.1	68
24	Changes of intramuscular phospholipids and free fatty acids during the processing of Nanjing dry-cured duck. Food Chemistry, 2008, 110, 279-284.	8.2	67
25	Glycation-induced structural modification of myofibrillar protein and its relation to emulsifying properties. LWT - Food Science and Technology, 2020, 117, 108664.	5.2	62
26	Gallic Acid-Aided Cross-Linking of Myofibrillar Protein Fabricated Soluble Aggregates for Enhanced Thermal Stability and a Tunable Colloidal State. Journal of Agricultural and Food Chemistry, 2020, 68, 11535-11544.	5.2	62
27	Thermal gelling properties and mechanism of porcine myofibrillar protein containing flaxseed gum at different NaCl concentrations. LWT - Food Science and Technology, 2018, 87, 361-367.	5.2	61
28	Physicochemical and structural properties of myofibrillar proteins isolated from pale, soft, exudative (PSE)-like chicken breast meat: Effects of pulsed electric field (PEF). Innovative Food Science and Emerging Technologies, 2020, 59, 102277.	5.6	60
29	High pressure processing alters water distribution enabling the production of reduced-fat and reduced-salt pork sausages. Meat Science, 2015, 102, 69-78.	5.5	59
30	High-pressure homogenization combined with sulfhydryl blockage by hydrogen peroxide enhance the thermal stability of chicken breast myofibrillar protein aqueous solution. Food Chemistry, 2019, 285, 31-38.	8.2	58
31	Structural and functional modification of food proteins by high power ultrasound and its application in meat processing. Critical Reviews in Food Science and Nutrition, 2021, 61, 1914-1933.	10.3	58
32	Influence of caspase3 selective inhibitor on proteolysis of chicken skeletal muscle proteins during post mortem aging. Food Chemistry, 2009, 115, 181-186.	8.2	56
33	High pressure/thermal combinations on texture and water holding capacity of chicken batters. Innovative Food Science and Emerging Technologies, 2015, 30, 8-14.	5.6	56
34	Effects of ultrasound frequency mode on myofibrillar protein structure and emulsifying properties. International Journal of Biological Macromolecules, 2020, 163, 1768-1779.	7.5	55
35	Susceptibility of Exopalaemon carinicauda to the Infection with Shrimp Hemocyte Iridescent Virus (SHIV 20141215), a Strain of Decapod Iridescent Virus 1 (DIV1). Viruses, 2019, 11, 387.	3.3	52
36	Water-soluble myofibrillar protein–pectin complex for enhanced physical stability near the isoelectric point: Fabrication, rheology and thermal property. International Journal of Biological Macromolecules, 2020, 142, 615-623.	7.5	52

#	Article	IF	CITATIONS
37	Modification of myofibrillar protein functional properties prepared by various strategies: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 458-500.	11.7	52
38	Contribution of Three Ionic Types of Polysaccharides to the Thermal Gelling Properties of Chicken Breast Myosin. Journal of Agricultural and Food Chemistry, 2014, 62, 2655-2662.	5.2	50
39	Effects of high-pressure treatments on water characteristics and juiciness of rabbit meat sausages: Role of microstructure and chemical interactions. Innovative Food Science and Emerging Technologies, 2017, 41, 150-159.	5.6	50
40	Overheating induced structural changes of type I collagen and impaired the protein digestibility. Food Research International, 2020, 134, 109225.	6.2	47
41	Ultrasound-assisted covalent reaction of myofibrillar protein: The improvement of functional properties and its potential mechanism. Ultrasonics Sonochemistry, 2021, 76, 105652.	8.2	45
42	Real meat and plant-based meat analogues have different in vitro protein digestibility properties. Food Chemistry, 2022, 387, 132917.	8.2	45
43	Protein deamidation to produce processable ingredients and engineered colloids for emerging food applications. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 3788-3817.	11.7	44
44	Effects of ultrafine comminution treatment on gelling properties of myofibrillar proteins from chicken breast. Food Hydrocolloids, 2019, 97, 105199.	10.7	43
45	Effects of High-Pressure Processing on the Cooking Loss and Gel Strength of Chicken Breast Actomyosin Containing Sodium Alginate. Food and Bioprocess Technology, 2014, 7, 3608-3617.	4.7	41
46	<scp>l</scp> â€histidine improves water retention of heatâ€induced gel of chicken breast myofibrillar proteins in low ionic strength solution. International Journal of Food Science and Technology, 2016, 51, 1195-1203.	2.7	41
47	Application of isoelectric solubilization/precipitation processing to improve gelation properties of protein isolated from pale, soft, exudative (PSE)-like chicken breast meat. LWT - Food Science and Technology, 2016, 72, 141-148.	5.2	40
48	Borate suppresses the scavenging activity of gallic acid and plant polyphenol extracts on DPPH radical: A potential interference to DPPH assay. LWT - Food Science and Technology, 2020, 131, 109769.	5.2	40
49	Generation of bioactive peptides from duck meat during post-mortem aging. Food Chemistry, 2017, 237, 408-415.	8.2	39
50	Manipulating interfacial behavior and emulsifying properties of myosin through alkali-heat treatment. Food Hydrocolloids, 2018, 85, 69-74.	10.7	39
51	Fucoxanthin activities motivate its nano/micro-encapsulation for food or nutraceutical application: a review. Food and Function, 2020, 11, 9338-9358.	4.6	39
52	Effect of high pressure on cooking losses and functional properties of reduced-fat and reduced-salt pork sausage emulsions. Innovative Food Science and Emerging Technologies, 2015, 29, 125-133.	5.6	38
53	Effects of inulin on the gel properties and molecular structure of porcine myosin: A underlying mechanisms study. Food Hydrocolloids, 2020, 108, 105974.	10.7	38
54	A comparative study of functional properties of normal and wooden breast broiler chicken meat with NaCl addition. Poultry Science, 2017, 96, 3473-3481.	3.4	37

#	Article	IF	CITATIONS
55	Influence of extreme alkaline pH induced unfolding and aggregation on PSE-like chicken protein edible film formation. Food Chemistry, 2020, 319, 126574.	8.2	37
56	Trace the difference driven by unfolding-refolding pathway of myofibrillar protein: Emphasizing the changes on structural and emulsion properties. Food Chemistry, 2022, 367, 130688.	8.2	37
57	Structural and solubility properties of pale, soft and exudative (PSE)-like chicken breast myofibrillar protein: Effect of glycosylation. LWT - Food Science and Technology, 2018, 95, 209-215.	5.2	36
58	Chicken breast quality – normal, pale, soft and exudative (<scp>PSE</scp>) and woody – influences the functional properties of meat batters. International Journal of Food Science and Technology, 2018, 53, 654-664.	2.7	36
59	Different physicochemical, structural and digestibility characteristics of myofibrillar protein from PSE and normal pork before and after oxidation. Meat Science, 2016, 121, 228-237.	5.5	35
60	Effects of different ultrasound frequencies on the structure, rheological and functional properties of myosin: Significance of quorum sensing. Ultrasonics Sonochemistry, 2020, 69, 105268.	8.2	35
61	Covalent chemical modification of myofibrillar proteins to improve their gelation properties: A systematic review. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 924-959.	11.7	34
62	Phenolic modification of myofibrillar protein enhanced by ultrasound: The structure of phenol matters. Food Chemistry, 2022, 386, 132662.	8.2	34
63	Advances in converting of meat protein into functional ingredient via engineering modification of high pressure homogenization. Trends in Food Science and Technology, 2020, 106, 12-29.	15.1	32
64	Isolation of novel ACEâ€inhibitory peptide from naked oat globulin hydrolysates <i>in silico</i> approach: Molecular docking, <i>in vivo</i> antihypertension and effects on renin and intracellular endothelinâ€1. Journal of Food Science, 2020, 85, 1328-1337.	3.1	32
65	Effects of pulsed electric fields on the conformation and gelation properties of myofibrillar proteins isolated from pale, soft, exudative (PSE)-like chicken breast meat: A molecular dynamics study. Food Chemistry, 2021, 342, 128306.	8.2	32
66	A TaqMan probe based real-time PCR for the detection of Decapod iridescent virus 1. Journal of Invertebrate Pathology, 2020, 173, 107367.	3.2	31
67	Highâ€pressure processingâ€induced conformational changes during heating affect water holding capacity of myosin gel. International Journal of Food Science and Technology, 2017, 52, 724-732.	2.7	30
68	Inhibition of Epigallocatechin-3-gallate/Protein Interaction by Methyl-β-cyclodextrin in Myofibrillar Protein Emulsion Gels under Oxidative Stress. Journal of Agricultural and Food Chemistry, 2018, 66, 8094-8103.	5.2	30
69	Myofibrillar protein–curcumin nanocomplexes prepared at different ionic strengths to improve oxidative stability of marinated chicken meat products. LWT - Food Science and Technology, 2019, 99, 69-76.	5.2	29
70	Applications of high pressure to pre-rigor rabbit muscles affect the water characteristics of myosin gels. Food Chemistry, 2018, 240, 59-66.	8.2	28
71	Structural changes and emulsion properties of goose liver proteins obtained by isoelectric solubilisation/precipitation processes. LWT - Food Science and Technology, 2019, 102, 190-196.	5.2	28
72	Physicochemical and microstructural attributes of marinated chicken breast influenced by breathing ultrasonic tumbling. Ultrasonics Sonochemistry, 2020, 64, 105022.	8.2	28

#	Article	IF	CITATIONS
73	Effect of high intensity ultrasound on the gelation properties of wooden breast meat with different NaCl contents. Food Chemistry, 2021, 347, 129031.	8.2	28
74	Effect of salt content on gelation of normal and wooden breast myopathy chicken <i>pectoralis major</i> meat batters. International Journal of Food Science and Technology, 2017, 52, 2068-2077.	2.7	27
75	Impact of gum Arabic on the partition and stability of resveratrol in sunflower oil emulsions stabilized by whey protein isolate. Colloids and Surfaces B: Biointerfaces, 2019, 181, 749-755.	5.0	27
76	Effect of pH on heat-induced gelation of duck blood plasma protein. Food Hydrocolloids, 2014, 35, 324-331.	10.7	26
77	Applications of high pressure to pre-rigor rabbit muscles affect the functional properties associated with heat-induced gelation. Meat Science, 2017, 129, 176-184.	5.5	26
78	Soluble Aggregates of Myofibrillar Proteins Engineered by Gallic Acid: Colloidal Structure and Resistance to <i>In Vitro</i> Gastric Digestion. Journal of Agricultural and Food Chemistry, 2022, 70, 4066-4075.	5.2	26
79	New insights into the ultrasound impact on covalent reactions of myofibrillar protein. Ultrasonics Sonochemistry, 2022, 84, 105973.	8.2	26
80	The case for thyroid disruption in early life stage exposures to thiram in zebrafish (Danio rerio). General and Comparative Endocrinology, 2019, 271, 73-81.	1.8	24
81	Oxidative stability of isoelectric solubilization/precipitation-isolated PSE-like chicken protein. Food Chemistry, 2019, 283, 646-655.	8.2	24
82	Effects of high hydrostatic pressure treatment on the emulsifying behavior of myosin and its underlying mechanism. LWT - Food Science and Technology, 2021, 146, 111397.	5.2	24
83	Comparison of the interfacial properties of native and refolded myofibrillar proteins subjected to pH-shifting. Food Chemistry, 2022, 380, 131734.	8.2	24
84	Comparative study of extraction efficiency and composition of protein recovered from chicken liver by acid–alkaline treatment. Process Biochemistry, 2016, 51, 1629-1635.	3.7	23
85	Improving physicochemical properties of myofibrillar proteins from wooden breast of broiler by diverse glycation strategies. Food Chemistry, 2022, 382, 132328.	8.2	23
86	Continuous cyclic wet heating glycation to prepare myofibrillar protein-glucose conjugates: A study on the structures, solubility and emulsifying properties. Food Chemistry, 2022, 388, 133035.	8.2	23
87	Stabilization of O/W emulsions via interfacial protein concentrating induced by thermodynamic incompatibility between sarcoplasmic proteins and xanthan gum. Food Hydrocolloids, 2022, 124, 107242.	10.7	22
88	Tailoring protein intrinsic charge by enzymatic deamidation for solubilizing chicken breast myofibrillar protein in water. Food Chemistry, 2022, 385, 132512.	8.2	21
89	Self-powered, ultra-high detectivity and high-speed near-infrared photodetectors from stacked–layered MoSe ₂ /Si heterojunction. Nanotechnology, 2021, 32, 075201.	2.6	20
90	Optimizing 3D printing of chicken meat by response surface methodology and genetic algorithm: Feasibility study of 3D printed chicken product. LWT - Food Science and Technology, 2022, 154, 112693.	5.2	20

#	Article	IF	CITATIONS
91	Stability improvement of reduced-fat reduced-salt meat batter through modulation of secondary and tertiary protein structures by means of high pressure processing. Meat Science, 2021, 176, 108439.	5.5	19
92	Interfacial rheology of alkali pH-shifted myofibrillar protein at O/W interface and impact of Tween 20 displacement. Food Hydrocolloids, 2022, 124, 107275.	10.7	19
93	Effect of wooden breast myopathy on water-holding capacity and rheological and gelling properties of chicken broiler breast batters. Poultry Science, 2020, 99, 3742-3751.	3.4	18
94	Structural basis for high-intensity ultrasound treatment in the rheology of myofibrillar protein extracted from White Croaker in relation to their solubility. LWT - Food Science and Technology, 2022, 156, 112979.	5.2	18
95	Interactions of water-soluble myofibrillar protein with chitosan: Phase behavior, microstructure and rheological properties. Innovative Food Science and Emerging Technologies, 2022, 78, 103013.	5.6	18
96	Synergistic effect of preheating and different power output high-intensity ultrasound on the physicochemical, structural, and gelling properties of myofibrillar protein from chicken wooden breast. Ultrasonics Sonochemistry, 2022, 86, 106030.	8.2	18
97	High-pressure effects on the molecular aggregation and physicochemical properties of myosin in relation to heat gelation. Food Research International, 2017, 99, 413-418.	6.2	17
98	Alkaline pH-dependent thermal aggregation of chicken breast myosin: formation of soluble aggregates. CYTA - Journal of Food, 2018, 16, 765-775.	1.9	17
99	Effects of chicken myofibrillar protein concentration on protein oxidation and water holding capacity of its heat-induced gels. Journal of Food Measurement and Characterization, 2018, 12, 2302-2312.	3.2	17
100	Effect of the disruption chamber geometry on the physicochemical and structural properties of water-soluble myofibrillar proteins prepared by high pressure homogenization (HPH). LWT - Food Science and Technology, 2019, 105, 215-223.	5.2	17
101	Fabrication and characterisation of whey protein isolate–propolis–alginate complex particles for stabilising α-tocopherol-contained emulsions. International Dairy Journal, 2020, 109, 104756.	3.0	17
102	Dual role (promotion and inhibition) of transglutaminase in mediating myoï¬brillar protein gelation under malondialdehyde-induced oxidative stress. Food Chemistry, 2021, 353, 129453.	8.2	17
103	Changes of Molecular Forces During Thermo-Gelling of Protein Isolated from PSE-Like Chicken Breast by Various Isoelectric Solubilization/Precipitation Extraction Strategies. Food and Bioprocess Technology, 2017, 10, 1240-1247.	4.7	16
104	Yield, thermal denaturation, and microstructure of proteins isolated from pale, soft, exudative chicken breast meat by using isoelectric solubilization/precipitation. Process Biochemistry, 2017, 58, 167-173.	3.7	15
105	Isoelectric solubilization/precipitation processing modified sarcoplasmic protein from pale, soft, exudative-like chicken meat. Food Chemistry, 2019, 287, 1-10.	8.2	15
106	Processing Properties and Improvement of Pale, Soft, and Exudative-Like Chicken Meat: a Review. Food and Bioprocess Technology, 2020, 13, 1280-1291.	4.7	15
107	A staining method for detection of Enterocytozoon hepatopenaei (EHP) spores with calcofluor white. Journal of Invertebrate Pathology, 2020, 172, 107347.	3.2	15
108	Effects of Heat-oxidized Soy Protein Isolate on Growth Performance and Digestive Function of Broiler Chickens at Early Age. Asian-Australasian Journal of Animal Sciences, 2015, 28, 544-550.	2.4	14

#	Article	IF	CITATIONS
109	Influence of biofilm surface layer protein A (<scp>BslA</scp>) on the gel structure of myofibril protein from chicken breast. Journal of the Science of Food and Agriculture, 2017, 97, 4712-4720.	3.5	14
110	High-pressure effects on myosin in relation to heat gelation: A micro-perspective study. Food Hydrocolloids, 2018, 84, 219-228.	10.7	14
111	Antioxidant activity of peptides in postmortem aged duck meat as affected by cooking and <i>in vitro</i> digestion. International Journal of Food Properties, 2019, 22, 727-736.	3.0	14
112	Effects of oxidation on the structure of collagen fibers of sea cucumber (Apostichopus japonicus) body wall during thermal processing. LWT - Food Science and Technology, 2021, 138, 110528.	5.2	14
113	Characterization and bioactivity of phlorotannin loaded protein-polysaccharide nanocomplexes. LWT - Food Science and Technology, 2022, 155, 112998.	5.2	14
114	Thermal gelling properties and mechanism of porcine myofibrillar protein containing flaxseed gum at various pH values. CYTA - Journal of Food, 2016, 14, 547-554.	1.9	13
115	Optimization of textural properties of reduced-fat and reduced-salt emulsion-type sausages treated with high pressure using a response surface methodology. Innovative Food Science and Emerging Technologies, 2016, 33, 162-169.	5.6	13
116	Temperature-dependent in vitro digestion properties of isoelectric solubilization/precipitation (ISP)-isolated PSE-like chicken protein. Food Chemistry, 2021, 343, 128501.	8.2	13
117	Antioxidant activity and stability of αâ€ŧocopherol, resveratrol and epigallocatechinâ€3â€gallate in mixture and complexation with bovine serum albumin. International Journal of Food Science and Technology, 2021, 56, 1788-1800.	2.7	13
118	Characterization of whey protein-based nanocomplex to load fucoxanthin and the mechanism of action on glial cells PC12. LWT - Food Science and Technology, 2021, 151, 112208.	5.2	13
119	Effects of sodium tripolyphosphate on functional properties of lowâ€salt singleâ€step highâ€pressure processed chicken breast sausage. International Journal of Food Science and Technology, 2016, 51, 2106-2113.	2.7	12
120	Gelation properties of goose liver protein recovered by isoelectric solubilisation/precipitation process. International Journal of Food Science and Technology, 2018, 53, 356-364.	2.7	12
121	Quality and microbial community of high pressure shucked crab (<i>Eriocheir sinensis</i>) meat stored at 4°C. Journal of Food Processing and Preservation, 2021, 45, e15330.	2.0	12
122	Waterâ€soluble myofibrillar proteins prepared by highâ€pressure homogenisation: a comparison study on the composition and functionality. International Journal of Food Science and Technology, 2017, 52, 2334-2342.	2.7	11
123	Insight into the effect of charge regulation on the binding mechanism of curcumin to myofibrillar protein. Food Chemistry, 2021, 352, 129395.	8.2	11
124	Inhibition of Heat-Induced Flocculation of Myosin-Based Emulsions through Steric Repulsion by Conformational Adaptation-Enhanced Interfacial Protein with an Alkaline pH-Shifting-Driven Method. Langmuir, 2018, 34, 8848-8856.	3.5	10
125	Effect of high-pressure homogenization on structural changes and emulsifying properties of chicken liver proteins isolated by isoelectric solubilization/precipitation. LWT - Food Science and Technology, 2021, 151, 112092.	5.2	10
126	Comparative study on the in vitro digestibility of chicken protein after different modifications. Food Chemistry, 2022, 385, 132652.	8.2	10

#	Article	IF	CITATIONS
127	Changes of myofibrillar protein structure improved the stability and distribution of baicalein in emulsion. LWT - Food Science and Technology, 2021, 137, 110404.	5.2	9
128	Sequential changes in antioxidant activity and structure of curcumin-myofibrillar protein nanocomplex during in vitro digestion. Food Chemistry, 2022, 382, 132331.	8.2	9
129	Synergistic effects of UVA irradiation and phlorotannin extracts of Laminaria japonica on properties of grass carp myofibrillar protein gel. Journal of the Science of Food and Agriculture, 2021, 101, 2659-2667.	3.5	8
130	Robustness of protein: Using pH shifting and low speed shearing to partially recover conformation and dispersibility of myosin from pale, soft, exudative (PSE)-like chicken breast. LWT - Food Science and Technology, 2021, 138, 110786.	5.2	8
131	Quality characteristics of shucked crab meat (<i>Eriocheir sinensis</i>) processed by high pressure during superchilled storage. Journal of Food Biochemistry, 2021, 45, e13708.	2.9	8
132	Interactions between the protein-epigallocatechin gallate complex and nanocrystalline cellulose: A systematic study. Food Chemistry, 2022, 387, 132791.	8.2	8
133	Effect of Sodium Chloride on the Properties of Readyâ€ŧoâ€Eat Pressureâ€Induced Gelâ€Type Chicken Meat Products. Journal of Food Process Engineering, 2017, 40, e12299.	2.9	7
134	Changes in <i>inÂvitro</i> protein digestion of retortâ€pouched pork belly during 120â€day storage. International Journal of Food Science and Technology, 2017, 52, 2684-2694.	2.7	7
135	Stability of antioxidant peptides from duck meat after postâ€mortem ageing. International Journal of Food Science and Technology, 2017, 52, 2513-2521.	2.7	7
136	Comparison of the Acidic and Alkaline Treatment on Emulsion Composite Gel Properties of the Proteins Recovered from Chicken Breast by Isoelectric Solubilization/Precipitation Process. Journal of Food Processing and Preservation, 2017, 41, e12884.	2.0	7
137	Precipitation and ultimate pH effect on chemical and gelation properties of protein prepared by isoelectric solubilization/precipitation process from pale, soft, exudative (PSE)-like chicken breast meat. Poultry Science, 2017, 96, 1504-1512.	3.4	7
138	High intake of chicken and pork proteins aggravates high-fat-diet-induced inflammation and disorder of hippocampal glutamatergic system. Journal of Nutritional Biochemistry, 2020, 85, 108487.	4.2	7
139	Resistance of detached-cells of biofilm formed by Staphylococcus aureus to ultra high pressure homogenization. Food Research International, 2021, 139, 109954.	6.2	5
140	Conformational and rheological changes of high-pressure processing treated rabbit myosin subfragments during heating. LWT - Food Science and Technology, 2020, 122, 108994.	5.2	4
141	Effect of high-pressure treatment on the heat-induced emulsion gelation of rabbit myosin. LWT - Food Science and Technology, 2022, 154, 112719.	5.2	4
142	Recovery of emulsifying and gelling protein from waste chicken exudate by using a sustainable pH-shifting treatment. Food Chemistry, 2022, 387, 132886.	8.2	4
143	Loss of immobilized water and intense protein aggregation responsible for quality deterioration of ready to eat firm tofu. Journal of Texture Studies, 2021, 52, 492-500.	2.5	3
144	Freeze-Thawing Treatment as a Simple Way to Tune the Gel Property and Digestibility of Minced Meat from Red Swamp Crayfish (Procambarus clarkiix). Foods, 2022, 11, 837.	4.3	2

#	Article	IF	CITATIONS
145	Healthy benefits and edible delivery systems of resveratrol: a review. Food Reviews International, 2023, 39, 3879-3905.	8.4	2
146	Impact of Phytophenols on Myofibrillar Proteins: Revisit the Interaction Scenarios Inspired for Meat Products Innovation. Food Reviews International, 2023, 39, 5637-5665.	8.4	2
147	Insight Into the Effect of Carnosine on the Dispersibility of Myosin Under a Low-salt Condition and its Mechanism. Food Biophysics, 2023, 18, 71-81.	3.0	1