Hussein A Mohammed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6573193/publications.pdf Version: 2024-02-01

		36203	45213
170	9,324	51	90
papers	citations	h-index	g-index
171	171	171	5535
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A review on applications and challenges of nanofluids. Renewable and Sustainable Energy Reviews, 2011, 15, 1646-1668.	8.2	1,521
2	Numerical simulation of heat transfer enhancement in wavy microchannel heat sink. International Communications in Heat and Mass Transfer, 2011, 38, 63-68.	2.9	257
3	The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes. International Communications in Heat and Mass Transfer, 2010, 37, 1078-1086.	2.9	250
4	Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: A review. Renewable and Sustainable Energy Reviews, 2011, 15, 1502-1512.	8.2	249
5	A review on preparation methods and challenges of nanofluids. International Communications in Heat and Mass Transfer, 2014, 54, 115-125.	2.9	228
6	A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems. Renewable and Sustainable Energy Reviews, 2011, 15, 310-323.	8.2	223
7	Numerical study of convective heat transfer of nanofluids: A review. Renewable and Sustainable Energy Reviews, 2016, 54, 1212-1239.	8.2	222
8	Review of convection heat transfer and fluid flow in porous media with nanofluid. Renewable and Sustainable Energy Reviews, 2015, 41, 715-734.	8.2	221
9	Applications of variable speed drive (VSD) in electrical motors energy savings. Renewable and Sustainable Energy Reviews, 2012, 16, 543-550.	8.2	177
10	Convective heat transfer and fluid flow study over a step using nanofluids: A review. Renewable and Sustainable Energy Reviews, 2011, 15, 2921-2939.	8.2	159
11	An overview on heat transfer augmentation using vortex generators and nanofluids: Approaches and applications. Renewable and Sustainable Energy Reviews, 2012, 16, 5951-5993.	8.2	158
12	Heat transfer enhancement of nanofluids in a double pipe heat exchanger with louvered strip inserts. International Communications in Heat and Mass Transfer, 2013, 40, 36-46.	2.9	157
13	Influence of channel shape on the thermal and hydraulic performance of microchannel heat sink. International Communications in Heat and Mass Transfer, 2011, 38, 474-480.	2.9	155
14	Characteristics of heat transfer and fluid flow in microtube and microchannel using conventional fluids and nanofluids: A review. Renewable and Sustainable Energy Reviews, 2013, 28, 848-880.	8.2	153
15	Effect of nanoparticle shapes on the heat transfer enhancement in a wavy channel with different phase shifts. Journal of Molecular Liquids, 2014, 196, 32-42.	2.3	131
16	A review on exergy analysis of biomass based fuels. Renewable and Sustainable Energy Reviews, 2012, 16, 1217-1222.	8.2	126
17	Heat transfer in rectangular microchannels heat sink using nanofluids. International Communications in Heat and Mass Transfer, 2010, 37, 1496-1503.	2.9	119
18	Forced, natural and mixed-convection heat transfer and fluid flow in annulus: A review.	2.9	111

#	Article	IF	CITATIONS
19	Heat transfer enhancement and pressure drop for fin-and-tube compact heat exchangers with wavy rectangular winglet-type vortex generators. International Communications in Heat and Mass Transfer, 2014, 54, 132-140.	2.9	107
20	Numerical study of thermal enhancement in micro channel heat sink with secondary flow. International Journal of Heat and Mass Transfer, 2014, 78, 216-223.	2.5	104
21	Influence of geometrical parameters of hexagonal, circular, and rhombus microchannel heat sinks on the thermohydraulic characteristics. International Communications in Heat and Mass Transfer, 2014, 52, 121-131.	2.9	98
22	Laminar forced convection flow over a backward facing step using nanofluids. International Communications in Heat and Mass Transfer, 2010, 37, 950-957.	2.9	97
23	The impact of various nanofluid types on triangular microchannels heat sink cooling performance. International Communications in Heat and Mass Transfer, 2011, 38, 767-773.	2.9	95
24	Influence of geometrical parameters and forced convective heat transfer in transversely corrugated circular tubes. International Communications in Heat and Mass Transfer, 2013, 44, 116-126.	2.9	92
25	Thermal and hydraulic characteristics of nanofluid flow in a helically coiled tube heat exchanger. International Communications in Heat and Mass Transfer, 2012, 39, 1375-1383.	2.9	89
26	Thermal–hydraulic performance of fin-and-oval tube compact heat exchangers with innovative design of corrugated fin patterns. International Journal of Heat and Mass Transfer, 2017, 106, 573-592.	2.5	89
27	Thermal and hydraulic characteristics of turbulent nanofluids flow in a rib–groove channel. International Communications in Heat and Mass Transfer, 2012, 39, 1584-1594.	2.9	87
28	An end-use energy analysis in a Malaysian public hospital. Energy, 2010, 35, 4780-4785.	4.5	86
29	Influence of nanofluids on parallel flow square microchannel heat exchanger performance. International Communications in Heat and Mass Transfer, 2011, 38, 1-9.	2.9	85
30	Influence of various base nanofluids and substrate materials on heat transfer in trapezoidal microchannel heat sinks. International Communications in Heat and Mass Transfer, 2011, 38, 194-201.	2.9	78
31	Fluid flow and heat transfer characteristics of nanofluids in heat pipes: A review. International Communications in Heat and Mass Transfer, 2014, 56, 50-62.	2.9	78
32	Chillers energy consumption, energy savings and emission analysis in an institutional buildings. Energy, 2011, 36, 5233-5238.	4.5	77
33	Boundary layer flow and heat transfer due to permeable stretching tube in the presence of heat source/sink utilizing nanofluids. Applied Mathematics and Computation, 2014, 238, 149-162.	1.4	74
34	Enhancement heat transfer characteristics in the channel with Trapezoidal rib–groove using nanofluids. Case Studies in Thermal Engineering, 2015, 5, 48-58.	2.8	74
35	Design characteristics of corrugated trapezoidal plate heat exchangers using nanofluids. Chemical Engineering and Processing: Process Intensification, 2015, 87, 88-103.	1.8	74
36	Numerical investigation of trapezoidal grooved microchannel heat sink using nanofluids. Thermochimica Acta, 2013, 573, 39-56.	1.2	67

#	Article	IF	CITATIONS
37	An overview of different distillation methods for small scale applications. Renewable and Sustainable Energy Reviews, 2011, 15, 4756-4764.	8.2	66
38	Experimental study of nanofluid flow and heat transfer over microscale backward- and forward-facing steps. Experimental Thermal and Fluid Science, 2015, 65, 13-21.	1.5	65
39	The effect of nanofluids flow on mixed convection heat transfer over microscale backward-facing step. International Journal of Heat and Mass Transfer, 2012, 55, 5870-5881.	2.5	64
40	Improving solar cooker performance using phase change materials: A comprehensive review. Solar Energy, 2020, 207, 539-563.	2.9	64
41	Numerical investigation of heat transfer enhancement using various nanofluids in hexagonal microchannel heat sink. Thermal Science and Engineering Progress, 2018, 5, 252-262.	1.3	63
42	Phase change materials (PCMs) for improving solar still productivity: a review. Journal of Thermal Analysis and Calorimetry, 2020, 139, 1585-1617.	2.0	63
43	Influence of nanofluids and rotation on helically coiled tube heat exchanger performance. Thermochimica Acta, 2013, 564, 13-23.	1.2	62
44	Viscous dissipation and radiation effects on MHD natural convection in a square enclosure filled with a porous medium. Nuclear Engineering and Design, 2014, 266, 34-42.	0.8	62
45	Heat transfer enhancement of nanofluids flow in microtube with constant heat flux. International Communications in Heat and Mass Transfer, 2012, 39, 1195-1204.	2.9	59
46	Heat transfer enhancement of laminar nanofluids flow in a triangular duct using vortex generator. Superlattices and Microstructures, 2012, 52, 398-415.	1.4	59
47	Numerical and experimental investigation of heat transfer enhancement in a microtube using nanofluids. International Communications in Heat and Mass Transfer, 2014, 59, 88-100.	2.9	59
48	The effect of step height of microscale backward-facing step on mixed convection nanofluid flow and heat transfer characteristics. International Journal of Heat and Mass Transfer, 2014, 68, 554-566.	2.5	58
49	Design and fabrication of coaxial surface junction thermocouples for transient heat transfer measurements. International Communications in Heat and Mass Transfer, 2008, 35, 853-859.	2.9	57
50	Numerical investigation of mixed convection heat transfer of nanofluids in a lid-driven trapezoidal cavity. International Communications in Heat and Mass Transfer, 2016, 77, 195-205.	2.9	57
51	Thermal and hydraulic characteristics of nanofluid in a triangular grooved microchannel heat sink (TGMCHS). Applied Mathematics and Computation, 2014, 246, 168-183.	1.4	56
52	The effects of geometrical parameters of a corrugated channel with in out-of-phase arrangement. International Communications in Heat and Mass Transfer, 2013, 40, 47-57.	2.9	55
53	Computational Analysis of Three-Dimensional Unsteady Natural Convection and Entropy Generation in a Cubical Enclosure Filled with Water-Al2O3 Nanofluid. Arabian Journal for Science and Engineering, 2014, 39, 7483-7493.	1.1	55
54	Heat transfer enhancement of turbulent nanofluid flow over various types of internally corrugated channels. Powder Technology, 2015, 286, 332-341.	2.1	53

#	Article	IF	CITATIONS
55	A comprehensive review of fundamentals, preparation and applications of nanorefrigerants. International Communications in Heat and Mass Transfer, 2014, 54, 81-95.	2.9	52
56	Mixed convective nanofluid flow in a channel having backward-facing step with a baffle. Powder Technology, 2015, 275, 329-343.	2.1	52
57	Thermal performance of optimized interrupted microchannel heat sink (IMCHS) using nanofluids. International Communications in Heat and Mass Transfer, 2012, 39, 1595-1604.	2.9	51
58	Heat transfer and fluid flow over microscale backward and forward facing step: A review. International Communications in Heat and Mass Transfer, 2016, 76, 237-244.	2.9	51
59	Mixed convection nanofluid flow over microscale forward-facing step — Effect of inclination and step heights. International Communications in Heat and Mass Transfer, 2016, 78, 145-154.	2.9	50
60	Heat transfer and nanofluid flow characteristics through a circular tube fitted with helical tape inserts. International Communications in Heat and Mass Transfer, 2016, 71, 234-244.	2.9	47
61	Fluid flow and heat transfer of nanofluids in microchannel heat sink with V-type inlet/outlet arrangement. AEJ - Alexandria Engineering Journal, 2017, 56, 161-170.	3.4	47
62	Nanofluids for flat plate solar collectors: Fundamentals and applications. Journal of Cleaner Production, 2021, 291, 125725.	4.6	47
63	A review on kiln system modeling. Renewable and Sustainable Energy Reviews, 2011, 15, 2487-2500.	8.2	45
64	Experimental investigation of mixed convection heat transfer for thermally developing flow in a horizontal circular cylinder. Applied Thermal Engineering, 2007, 27, 1522-1533.	3.0	44
65	Mixed convection heat transfer of nanofluids over backward facing step having a slotted baffle. Applied Mathematics and Computation, 2014, 240, 368-386.	1.4	44
66	Numerical study of nanofluid forced convection flow in channels using different shaped transverse ribs. International Communications in Heat and Mass Transfer, 2015, 67, 176-188.	2.9	41
67	Two-phase forced convection of nanofluids flow in circular tubes using convergent and divergent conical rings inserts. International Communications in Heat and Mass Transfer, 2019, 101, 10-20.	2.9	40
68	Influence of nanofluids on mixed convective heat transfer over a horizontal backwardâ€facing step. Heat Transfer - Asian Research, 2011, 40, 287-307.	2.8	37
69	Numerical study of heat transfer enhancement of counter nanofluids flow in rectangular microchannel heat exchanger. Superlattices and Microstructures, 2011, 50, 215-233.	1.4	37
70	Experimental study of forced and free convective heat transfer in the thermal entry region of horizontal concentric annuli. International Communications in Heat and Mass Transfer, 2010, 37, 739-747.	2.9	36
71	Influence of nanofluid on turbulent forced convective flow in a channel with detached rib-arrays. International Communications in Heat and Mass Transfer, 2013, 46, 97-105.	2.9	36
72	Mixed Convection Over a Backward-Facing Step in a Vertical Duct Using Nanofluids—Buoyancy Opposing Case. Journal of Computational and Theoretical Nanoscience, 2014, 11, 860-872.	0.4	36

Hussein A Mohammed

#	Article	IF	CITATIONS
73	Enhance heat transfer in the channel with V-shaped wavy lower plate using liquid nanofluids. Case Studies in Thermal Engineering, 2015, 5, 13-23.	2.8	36
74	A review of photovoltaic cells cooling techniques. E3S Web of Conferences, 2017, 22, 00205.	0.2	36
75	Heat transfer and flow analysis of Al ₂ O ₃ -Water nanofluids in interrupted microchannel heat sink with ellipse and diamond ribs in the transverse microchambers. Heat Transfer Engineering, 2018, 39, 1461-1469.	1.2	36
76	Boosting CO ₂ adsorption and selectivity in metal–organic frameworks of MIL-96(Al) <i>via</i> second metal Ca coordination. RSC Advances, 2020, 10, 8130-8139.	1.7	36
77	Parametric design exploration of fin-and-oval tube compact heat exchangers performance with a new type of corrugated fin patterns. International Journal of Thermal Sciences, 2019, 144, 173-190.	2.6	35
78	Experimental and numerical study of nanofluid flow and heat transfer over microscale backward-facing step. International Journal of Heat and Mass Transfer, 2014, 79, 858-867.	2.5	34
79	Heat transfer augmentation using nanofluids in an elliptic annulus with constant heat flux boundary condition. Case Studies in Thermal Engineering, 2014, 4, 32-41.	2.8	33
80	Numerical investigation of fluid flow and heat transfer of nanofluids in microchannel with longitudinal fins. Ain Shams Engineering Journal, 2018, 9, 3411-3418.	3.5	31
81	Flameless combustion role in the mitigation of NO _X emission: a review. International Journal of Energy Research, 2014, 38, 827-846.	2.2	28
82	Analysis of efficiency enhancement of flat plate solar collector using crystal nano-cellulose (CNC) nanofluids. Sustainable Energy Technologies and Assessments, 2021, 45, 101049.	1.7	28
83	Laminar mixed convection heat transfer in a vertical circular tube under buoyancy-assisted and opposed flows. Energy Conversion and Management, 2008, 49, 2006-2015.	4.4	27
84	Thermally conductive polymer nanocomposites for filament-based additive manufacturing. Journal of Materials Science, 2022, 57, 3993-4019.	1.7	27
85	Heat transfer augmentation in concentric elliptic annular by ethylene glycol based nanofluids. International Communications in Heat and Mass Transfer, 2017, 82, 29-39.	2.9	25
86	3D Numerical Study of Conical and Fusiform Turbulators for Heat Transfer Improvement in a Double-Pipe Heat Exchanger. International Journal of Heat and Mass Transfer, 2021, 170, 120995.	2.5	25
87	Turbulent Nanofluid Flow Over Periodic Rib-Grooved Channels. Engineering Applications of Computational Fluid Mechanics, 2013, 7, 369-381.	1.5	24
88	Inclusion of nanoparticles in PCM for heat release unit. Journal of Molecular Liquids, 2020, 313, 113544.	2.3	24
89	Numerical Study of Periodic Magnetic Field Effect on 3D Natural Convection of MWCNT-Water/Nanofluid with Consideration of Aggregation. Processes, 2019, 7, 957.	1.3	23
90	Thermal and hydraulic characteristics of trapezoidal winglet across fin-and-tube heat exchanger (FTHE). Applied Thermal Engineering, 2019, 149, 1379-1393.	3.0	23

#	Article	IF	CITATIONS
91	Thermohydraulic and thermodynamics performance of hybrid nanofluids based parabolic trough solar collector equipped with wavy promoters. Renewable Energy, 2022, 182, 401-426.	4.3	23
92	Numerical investigation on heat transfer and friction factor characteristics of laminar and turbulent flow in an elliptic annulus utilizing nanofluid. International Communications in Heat and Mass Transfer, 2015, 66, 148-157.	2.9	22
93	MHD Heat Transfer in W-Shaped Inclined Cavity Containing a Porous Medium Saturated with Ag/Al2O3 Hybrid Nanofluid in the Presence of Uniform Heat Generation/Absorption. Energies, 2020, 13, 3457.	1.6	22
94	Effects of binary hybrid nanofluid on heat transfer and fluid flow in a triangular-corrugated channel: An experimental and numerical study. Powder Technology, 2022, 395, 267-279.	2.1	21
95	Transient electrohydrodynamic convective flow and heat transfer of MWCNT - Dielectric nanofluid in a heated enclosure. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126736.	0.9	20
96	Performance improvement of solar chimneys using phase change materials: A review. Solar Energy, 2021, 228, 68-88.	2.9	20
97	Heat Transfer Enhancement by Using Different Types of Inserts. Advances in Mechanical Engineering, 2014, 6, 250354.	0.8	19
98	Thermal Performance of Hybrid-Inspired Coolant for Radiator Application. Nanomaterials, 2020, 10, 1100.	1.9	19
99	Combined convection heat transfer for thermally developing aiding flow in an inclined circular cylinder with constant heat flux. Applied Thermal Engineering, 2007, 27, 1236-1247.	3.0	18
100	Dynamic Calibration and Performance of Reliable and Fast-Response Coaxial Temperature Probes in a Shock Tube Facility. Experimental Heat Transfer, 2011, 24, 109-132.	2.3	18
101	Buoyancy-assisted mixed convective flow over backward-facing step in a vertical duct using nanofluids. Thermophysics and Aeromechanics, 2012, 19, 33-52.	0.1	18
102	Mixed Convection of Water-Based Nanofluids in a Rectangular Inclined Lid-Driven Cavity Partially Heated from Its Left Side Wall. Journal of Computational and Theoretical Nanoscience, 2013, 10, 2222-2233.	0.4	17
103	Energy efficiency of a flat-plate solar collector using thermally treated graphene-based nanofluids: Experimental study. Nanomaterials and Nanotechnology, 2020, 10, 184798042096461.	1.2	17
104	The transient response for different types of erodable surface thermocouples using finite element analysis. Thermal Science, 2007, 11, 49-64.	0.5	17
105	Combined natural and forced convection heat transfer for assisting thermally developing flow in a uniformly heated vertical circular cylinder. International Communications in Heat and Mass Transfer, 2007, 34, 474-491.	2.9	16
106	The effect of scratch technique on the thermal-product value of temperature sensors. Thermophysics and Aeromechanics, 2011, 18, 51-64.	0.1	16
107	Experimental and numerical study of nanofluid flow and heat transfer over microscale forward-facing step. International Communications in Heat and Mass Transfer, 2014, 57, 319-329.	2.9	16
108	3D Magneto-Buoyancy-Thermocapillary Convection of CNT-Water Nanofluid in the Presence of a Magnetic Field. Processes, 2020, 8, 258.	1.3	16

#	Article	IF	CITATIONS
109	The effects of different entrance sections lengths and heating on free and forced convective heat transfer inside a horizontal circular tube. International Communications in Heat and Mass Transfer, 2007, 34, 769-784.	2.9	15
110	Fast response surface temperature sensor for hypersonic vehicles1. Instruments and Experimental Techniques, 2010, 53, 153-159.	0.1	15
111	Turbulent heat transfer enhancement in a triangular duct using deltaâ€winglet vortex generators. Heat Transfer - Asian Research, 2012, 41, 43-62.	2.8	15
112	Combined Convection Heat Transfer of Nanofluids Flow over Forward Facing Step in a Channel Having a Blockage. Applied Mechanics and Materials, 0, 388, 185-191.	0.2	15
113	Numerical study of assisting and opposing mixed convective nanofluid flows in an inclined circular pipe. International Communications in Heat and Mass Transfer, 2017, 85, 81-91.	2.9	15
114	Laminar air flow free convective heat transfer inside a vertical circular pipe with different inlet configurations. Thermal Science, 2007, 11, 43-63.	0.5	14
115	Threeâ€Dimensional Numerical Investigation of Nanofluids Flow in Microtube with Different Values of Heat Flux. Heat Transfer - Asian Research, 2015, 44, 599-619.	2.8	14
116	Numerical Study of Three Different Approaches to Simulate Nanofluids Flow and Heat Transfer in a Microtube. Heat Transfer - Asian Research, 2016, 45, 46-58.	2.8	14
117	Numerical Investigation of Heat Transfer from a Two-Dimensional Sudden Expansion Flow Using Nanofluids. Numerical Heat Transfer; Part A: Applications, 2012, 61, 527-546.	1.2	13
118	CFD based investigations on the effects of blockage shapes on transient mixed convective nanofluid flow over a backward facing step. Powder Technology, 2019, 346, 441-451.	2.1	13
119	Heat transfer by natural convection from a uniformly heated vertical circular pipe with different entry restriction configurations. Energy Conversion and Management, 2007, 48, 2244-2253.	4.4	12
120	Free and forced convection heat transfer in the thermal entry region for laminar flow inside a circular cylinder horizontally oriented. Energy Conversion and Management, 2007, 48, 2185-2195.	4.4	12
121	Thermal product of type-E fast response temperature sensors. Journal of Thermal Science, 2010, 19, 364-371.	0.9	12
122	Generality of Brownian motion velocity of two phase approach in interrupted microchannel heat sink. International Communications in Heat and Mass Transfer, 2013, 49, 128-135.	2.9	12
123	Experimental and Theoretical Analysis of Energy Efficiency in a Flat Plate Solar Collector Using Monolayer Graphene Nanofluids. Sustainability, 2021, 13, 5416.	1.6	12
124	Thermal and hydrodynamic performance analysis of circular microchannel heat exchanger utilizing nanofluids. International Journal of Numerical Methods for Heat and Fluid Flow, 2012, 22, 907-927.	1.6	10
125	Combined convection nanofluid flow and heat transfer over microscale forward-facing step. International Journal of Nanoparticles, 2014, 7, 1.	0.1	10
126	Hybrid Nanocellulose-Copper (II) Oxide as Engine Oil Additives for Tribological Behavior Improvement. Molecules, 2020, 25, 2975.	1.7	10

#	Article	IF	CITATIONS
127	MXene Based Palm Oil Methyl Ester as an Effective Heat Transfer Fluid. Journal of Nano Research, 0, 68, 17-34.	0.8	10
128	Effect of Vertical Baffle Installation on Forced Convective Heat Transfer in Channel Having a Backward Facing Step. Applied Mechanics and Materials, 0, 388, 169-175.	0.2	9
129	Numerical Study of Fluid Flow and Heat Transfer Enhancement of Nanofluids over Tube Bank. Applied Mechanics and Materials, 0, 388, 149-155.	0.2	9
130	Heat Transfer and Fluid Flow Characteristics in Helically Coiled Tube Heat Exchanger (HCTHE) Using Nanofluids: A Review. Journal of Computational and Theoretical Nanoscience, 2014, 11, 911-927.	0.4	9
131	The effect of different inlet geometries on laminar flow combined convection heat transfer inside a horizontal circular pipe. Applied Thermal Engineering, 2009, 29, 581-590.	3.0	8
132	Effects of diameter ratio of adiabatic circular cylinder and tilt angle on natural convection from a square open tilted cavity. Heat Transfer - Asian Research, 2012, 41, 388-401.	2.8	8
133	Influence of Various Geometrical Shapes on Mixed Convection Through an Open-Cell Aluminium Foam Filled with Nanofluid. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1275-1289.	0.4	8
134	Free convective heat transfer from a constant heat flux vertical circular tube with different entrance restrictions length. Energy Conversion and Management, 2007, 48, 2233-2243.	4.4	7
135	Thermal product estimation method for aerodynamics experiments. Journal of Engineering Physics and Thermophysics, 2011, 84, 849-859.	0.2	7
136	Numerical Investigation on Laminar Flow Due to Sudden Expansion Using Nanofluid. Journal of Computational and Theoretical Nanoscience, 2012, 9, 2217-2227.	0.4	7
137	Heat Transfer Enhancements Using Traditional Fluids and Nanofluids in Pipes with Different Orientations: A Review. Journal of Nanofluids, 2017, 6, 987-1007.	1.4	7
138	Numerical study of combined convection heat transfer for thermally developing upward flow in a vertical cylinder. Thermal Science, 2008, 12, 89-102.	0.5	7
139	Pressure drop and friction factor for different shapes of microchannels. , 2009, , .		6
140	Determination of correlation functions of the oxide scale growth and the temperature increase. Engineering Failure Analysis, 2011, 18, 2260-2271.	1.8	6
141	HEAT TRANSFER MEASUREMENTS OF MIXED CONVECTION FOR UPWARD AND DOWNWARD LAMINAR FLOWS INSIDE A VERTICAL CIRCULAR CYLINDER. Experimental Heat Transfer, 2008, 21, 1-23.	2.3	5
142	Determination of the Effusivity of Different Scratched Coaxial Temperature Sensors Under Hypersonic Flow. International Journal of Thermophysics, 2010, 31, 2305-2322.	1.0	5
143	MHD natural convection inside an inclined trapezoidal porous enclosure with internal heat generation or absorption subjected to isoflux heating. Heat Transfer - Asian Research, 2012, 41, 498-515.	2.8	5
144	Laminar Nanofluid Flow Over Periodic Two Dimensional Rectangular Baffled Channels. Journal of Computational and Theoretical Nanoscience, 2014, 11, 1018-1030.	0.4	5

#	Article	IF	CITATIONS
145	Graphene Nanoplatelets Suspended in Different Basefluids Based Solar Collector: An Experimental and Analytical Study. Processes, 2021, 9, 302.	1.3	5
146	Numerical study of the thermal and hydraulic performances of heat sink made of wavy fins. Mechanics and Mechanical Engineering, 2019, 23, 150-161.	0.2	5
147	Hydrothermal and energy analysis of flat plate solar collector using copper oxide nanomaterials with different morphologies: Economic performance. Sustainable Energy Technologies and Assessments, 2022, 49, 101772.	1.7	5
148	Recent Trends in Applications of Nanofluids for Effective Utilization of Solar Energy. Current Nanoscience, 2022, 18, .	0.7	5
149	Heat Transfer Characteristics of Conventional Fluids and Nanofluids in Micro-Channels with Vortex Generators: A Review. Energies, 2022, 15, 1245.	1.6	5
150	Assisting and Opposing Combined Convective Heat Transfer and Nanofluids Flows Over a Vertical Forward Facing Step. Journal of Nanotechnology in Engineering and Medicine, 2014, 5, .	0.8	4
151	Experimental and Numerical Investigation of Combined Convection Heat Transfer and Fluid Flow around Circular Cylinder through Rectangular and Trapezoidal Open-Cell Aluminum Foams. Chemical Engineering Communications, 2015, 202, 674-693.	1.5	4
152	Thermal–Hydraulic Performance in a Microchannel Heat Sink Equipped with Longitudinal Vortex Generators (LVGs) and Nanofluid. Processes, 2020, 8, 231.	1.3	4
153	Influence of nanofluids on the efficiency of Flat-Plate Solar Collectors (FPSC). E3S Web of Conferences, 2017, 22, 00123.	0.2	3
154	Heat transfer enhancement for combined convection flow of nanofluids in a vertical rectangular duct considering radiation effects. Heat Transfer - Asian Research, 2011, 40, 448-463.	2.8	2
155	Heat Transfer Enhancement Using Nanofluids in a Circular Tube Fitted with Inserts. Journal of Computational and Theoretical Nanoscience, 2014, 11, 655-666.	0.4	2
156	Effect of Base Fluid on Mixed Convection Nanofluid Flow Over Microscale Backward-Facing Step. Journal of Computational and Theoretical Nanoscience, 2015, 12, 3076-3089.	0.4	2
157	The Effect of Base Fluid Type in Nanofluids for Heat Transfer Enhancement in Microtubes. Applied Mechanics and Materials, 2016, 818, 12-22.	0.2	2
158	Heat Transfer Enhancement in a Microchannel Heat Sink with Trapezoidal Cavities on the Side Walls. Applied Mechanics and Materials, 0, 819, 127-131.	0.2	2
159	Turbulent forced convection flow of nanofluids over triple forward facing step. World Journal of Engineering, 2017, 14, 263-278.	1.0	2
160	Graphene nanoplatelets–cellulose nanocrystals in engine oil for automotive applications. Green Materials, 2023, 11, 87-95.	1.1	2
161	Calibration of Rugged, Renewable and Fast Response Temperature Probes in a Hypersonic Flow Facility. , 2009, , .		1
162	Effect of Inclination Angle on Three-Dimensional Combined Convective Heat Transfer of Nanofluids in Rectangular Channels. Applied Mechanics and Materials, 0, 388, 176-184.	0.2	1

#	Article	IF	CITATIONS
163	Numerical Investigation of Combined Convection and Nanofluids Flow Over Backward Facing Step in a Channel Having a Blockage. Journal of Computational and Theoretical Nanoscience, 2014, 11, 971-980.	0.4	1
164	THE EFFECT OF GEOMETRICAL PARAMETERS ON ENHANCING THE HEATTRANSFER INSIDE A MICROTUBE. International Journal of Heat and Technology, 2015, 33, 79-84.	0.3	1
165	An experimental method for effusivity determination of different scratched temperature sensors. , 2009, , .		Ο
166	Numerical Investigation of Mixed Convective Flow Through a Vertical Duct With a Backward-Facing Step Using Nanofluids. , 2010, , .		0
167	The Effect of Using Nanofluids on Triangular Microchannel Heat Exchanger Performance. , 2010, , .		Ο
168	The Effect of Using Different Based Nanofluids on Trapezoidal Microchannels Cooling Performance. , 2010, , .		0
169	Pulse Detonation Engine Research Development at High Speed Reacting Flow Laboratory - HiREF, Universiti Teknologi Malaysia. Applied Mechanics and Materials, 2013, 388, 285-291.	0.2	0
170	Assisted and Opposed Mixed Convective Nanofluids Flow Over Vertical Backward Facing Step Having a Baffle. Journal of Computational and Theoretical Nanoscience, 2015, 12, 2048-2061.	0.4	0