List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6572615/publications.pdf Version: 2024-02-01

ΔΝΝΑ ΡΟΜΑΘο

#	Article	IF	CITATIONS
1	Cockroach allergens and asthma. Journal of Allergy and Clinical Immunology, 2001, 107, 419-428.	2.9	232
2	Nomenclature and structural biology ofÂallergens. Journal of Allergy and Clinical Immunology, 2007, 119, 414-420.	2.9	232
3	Recombinant allergens for diagnosis and therapy of allergic disease. Journal of Allergy and Clinical Immunology, 2000, 106, 409-418.	2.9	209
4	Update of the <scp>WHO</scp> / <scp>IUIS A</scp> llergen <scp>N</scp> omenclature <scp>D</scp> atabase based on analysis of allergen sequences. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 413-419.	5.7	163
5	WHO/IUIS Allergen Nomenclature: Providing a common language. Molecular Immunology, 2018, 100, 3-13.	2.2	162
6	Distribution of peanut allergen in the environment. Journal of Allergy and Clinical Immunology, 2004, 113, 973-976.	2.9	155
7	Proteases as Th2 adjuvants. Current Allergy and Asthma Reports, 2007, 7, 363-367.	5.3	132
8	Specific IgE and IgG antibody-binding patterns to recombinant cockroach allergens. Journal of Allergy and Clinical Immunology, 2005, 115, 803-809.	2.9	124
9	Relevant B Cell Epitopes in Allergic Disease. International Archives of Allergy and Immunology, 2010, 152, 1-11.	2.1	123
10	Fel d 4, a cat lipocalin allergen. Clinical and Experimental Allergy, 2004, 34, 1732-1738.	2.9	104
11	The structure of the dust mite allergen Der p 7 reveals similarities to innate immune proteins. Journal of Allergy and Clinical Immunology, 2010, 125, 909-917.e4.	2.9	99
12	Alternaria alternata allergen Alt a 1: A unique β-barrel protein dimer found exclusively in fungi. Journal of Allergy and Clinical Immunology, 2012, 130, 241-247.e9.	2.9	99
13	Novel Allergen Structures with Tandem Amino Acid Repeats Derived from German and American Cockroach. Journal of Biological Chemistry, 1998, 273, 30801-30807.	3.4	95
14	Monitoring peanut allergen in food products by measuring Ara h 1. Journal of Allergy and Clinical Immunology, 2003, 111, 640-645.	2.9	95
15	Ara h 2: crystal structure and IgE binding distinguish two subpopulations of peanut allergic patients by epitope diversity. Allergy: European Journal of Allergy and Clinical Immunology, 2011, 66, 878-885.	5.7	86
16	Cockroach Allergen Bla g 2. American Journal of Respiratory and Critical Care Medicine, 2002, 165, 391-397.	5.6	80
17	Crystal Structure of Cockroach Allergen Bla g 2, an Unusual Zinc Binding Aspartic Protease with a Novel Mode of Self-inhibition. Journal of Molecular Biology, 2005, 348, 433-444.	4.2	80
18	Bla g 6: A troponin C allergen from Blattella germanica with IgE binding calcium dependence. Journal of Allergy and Clinical Immunology, 2006, 117, 1389-1395.	2.9	80

#	Article	IF	CITATIONS
19	Crystal Structure of a Dimerized Cockroach Allergen Bla g 2 Complexed with a Monoclonal Antibody. Journal of Biological Chemistry, 2008, 283, 22806-22814.	3.4	80
20	Crystal Structures of Mite Allergens Der f 1 and Der p 1 Reveal Differences in Surface-Exposed Residues that May Influence Antibody Binding. Journal of Molecular Biology, 2009, 386, 520-530.	4.2	79
21	Molecular Determinants for Antibody Binding on Group 1 House Dust Mite Allergens. Journal of Biological Chemistry, 2012, 287, 7388-7398.	3.4	75
22	Serological, genomic and structural analyses of the major mite allergen Der p 23. Clinical and Experimental Allergy, 2016, 46, 365-376.	2.9	69
23	Cockroach allergen Bla g 2: An unusual aspartic proteinase. Journal of Allergy and Clinical Immunology, 2005, 116, 140-145.	2.9	65
24	Adenosine: A Partial Agonist of the Growth Hormone Secretagogue Receptor. Biochemical and Biophysical Research Communications, 2000, 276, 1306-1313.	2.1	64
25	The novel structure of the cockroach allergen Bla g 1 has implications for allergenicity and exposure assessment. Journal of Allergy and Clinical Immunology, 2013, 132, 1420-1426.e9.	2.9	64
26	Identification of Maillard reaction products on peanut allergens that influence binding to the receptor for advanced glycation end products. Allergy: European Journal of Allergy and Clinical Immunology, 2013, 68, 1546-1554.	5.7	63
27	New Insights into Cockroach Allergens. Current Allergy and Asthma Reports, 2017, 17, 25.	5.3	63
28	Indoor Allergens and Allergic Respiratory Disease. Current Allergy and Asthma Reports, 2016, 16, 43.	5.3	61
29	Analysis of T Cell Responses to the Major Allergens from German Cockroach: Epitope Specificity and Relationship to IgE Production. Journal of Immunology, 2012, 189, 679-688.	0.8	59
30	Air pollution and indoor settings. World Allergy Organization Journal, 2021, 14, 100499.	3.5	59
31	Proteomic and Immunochemical Characterization of Glutathione Transferase as a New Allergen of the Nematode Ascaris lumbricoides. PLoS ONE, 2013, 8, e78353.	2.5	57
32	Molecular cloning of Per a 1 and definition of the cross-reactive Group 1 cockroach allergens. Journal of Allergy and Clinical Immunology, 1999, 103, 859-864.	2.9	56
33	Investigating cockroach allergens: Aiming to improve diagnosis and treatment of cockroach allergic patients. Methods, 2014, 66, 75-85.	3.8	55
34	Der p 5 Crystal Structure Provides Insight into the Group 5 Dust Mite Allergens. Journal of Biological Chemistry, 2010, 285, 25394-25401.	3.4	52
35	Analysis of glutathione S-transferase allergen cross-reactivity in a North American population: RelevanceAfor molecular diagnosis. Journal of Allergy and Clinical Immunology, 2015, 136, 1369-1377.	2.9	52
36	Molecular cloning, expression and modelling of cat allergen, cystatin (Fel d 3), a cysteine protease inhibitor. Clinical and Experimental Allergy, 2001, 31, 1279-1286.	2.9	50

#	Article	IF	CITATIONS
37	The Mechanism for Hexachlorocyclohexane-Induced Cytotoxicity and Changes in Intracellular Ca2+Homeostasis in Cultured Cerebellar Granule Neurons Is Different for the Î ³ - and δ-Isomers. Toxicology and Applied Pharmacology, 1997, 142, 31-39.	2.8	49
38	A molecular perspective on TH2-promoting cytokine receptors in patients with allergic disease. Journal of Allergy and Clinical Immunology, 2014, 133, 952-960.e1.	2.9	47
39	Allergen content in German cockroach extracts and sensitization profiles to a new expanded set of cockroach allergens determine inÂvitro extract potency for IgE reactivity. Journal of Allergy and Clinical Immunology, 2019, 143, 1474-1481.e8.	2.9	39
40	Cockroach Allergens: Function, Structure and Allergenicity. Protein and Peptide Letters, 2007, 14, 960-969.	0.9	38
41	The allergenic activity and clinical impact of individual IgE-antibody binding molecules from indoor allergen sources. World Allergy Organization Journal, 2020, 13, 100118.	3.5	38
42	Analysis of cytokine production by peanutâ€reactive T cells identifies residual Th2 effectors in highly allergic children who received peanut oral immunotherapy. Clinical and Experimental Allergy, 2015, 45, 1201-1213.	2.9	37
43	Carbohydrates Contribute to the Interactions between Cockroach Allergen Bla g 2 and a Monoclonal Antibody. Journal of Immunology, 2011, 186, 333-340.	0.8	36
44	Allergens and their associated small molecule ligands—their dual role in sensitization. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2367-2382.	5.7	36
45	Carbohydrate epitopes currently recognized as targets for IgE antibodies. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2383-2394.	5.7	36
46	Cockroach allergens: Environmental distribution and relationship to disease. Current Allergy and Asthma Reports, 2001, 1, 466-473.	5.3	35
47	Peanut Allergen (Ara h 1) Detection in Foods Containing Chocolate. Journal of Food Protection, 2004, 67, 793-798.	1.7	35
48	Allergic sensitization: screening methods. Clinical and Translational Allergy, 2014, 4, 13.	3.2	34
49	Mechanisms of Allergen-Antibody Interaction of Cockroach Allergen Bla g 2 with Monoclonal Antibodies That Inhibit IgE Antibody Binding. PLoS ONE, 2011, 6, e22223.	2.5	33
50	Efficacy of Recombinant Allergens for Diagnosis of Cockroach Allergy in Patients with Asthma and/or Rhinitis. International Archives of Allergy and Immunology, 2013, 161, 213-219.	2.1	33
51	100ÂYears later: Celebrating the contributions of x-ray crystallography to allergy and clinical immunology. Journal of Allergy and Clinical Immunology, 2015, 136, 29-37.e10.	2.9	33
52	Inhibition of binding by convulsant agents in primary cultures of cerebellar neurons. Developmental Brain Research, 1993, 73, 85-90.	1.7	32
53	Recombinant Allergens for Diagnosis of Cockroach Allergy. Current Allergy and Asthma Reports, 2014, 14, 428.	5.3	32
54	Circulating Memory CD4+ T Cells Target Conserved Epitopes of Rhinovirus Capsid Proteins and Respond Rapidly to Experimental Infection in Humans. Journal of Immunology, 2016, 197, 3214-3224.	0.8	32

#	Article	IF	CITATIONS
55	Cockroach allergen component analysis of children with or without asthma and rhinitis in an inner-city birth cohort. Journal of Allergy and Clinical Immunology, 2019, 144, 935-944.	2.9	31
56	lgE reactivity of tandem repeats derived from cockroach allergen, Bla g 1. FEBS Journal, 2002, 269, 3086-3092.	0.2	30
57	Quantification of Ara h 1 in peanuts: why roasting makes a difference. Clinical and Experimental Allergy, 2006, 36, 824-830.	2.9	30
58	Allosteric interactions between Î ³ -aminobutyric acid, benzodiazepine and picrotoxinin binding sites in primary cultures of cerebellar granule cells. Differential effects induced by Î ³ - and Î-hexachlorocyclohexane. European Journal of Pharmacology, 1997, 319, 343-353.	3.5	29
59	Structural Aspects of the Allergen-Antibody Interaction. Frontiers in Immunology, 2020, 11, 2067.	4.8	29
60	Human IgE mAbs define variability in commercial Aspergillus extract allergen composition. JCI Insight, 2018, 3, .	5.0	28
61	Intrinsic properties of allergens and environmental exposure as determinants of allergenicity*. Allergy: European Journal of Allergy and Clinical Immunology, 2002, 57, 673-679.	5.7	27
62	Structural Analysis of Der p 1–Antibody Complexes and Comparison with Complexes of Proteins or Peptides with Monoclonal Antibodies. Journal of Immunology, 2015, 195, 307-316.	0.8	23
63	Mapping Human Monoclonal IgE Epitopes on the Major Dust Mite Allergen Der p 2. Journal of Immunology, 2020, 205, 1999-2007.	0.8	21
64	Antigenic Determinants of the Bilobal Cockroach Allergen Bla g 2. Journal of Biological Chemistry, 2016, 291, 2288-2301.	3.4	20
65	Antigenic Determinants of Der p 1: Specificity and Cross-Reactivity Associated with IgE Antibody Recognition. Journal of Immunology, 2017, 198, 1334-1344.	0.8	20
66	Allergen structures and biologic functions: The cutting edge of allergy research. Current Allergy and Asthma Reports, 2008, 8, 425-432.	5.3	19
67	Validation of a Phage Display and Computational Algorithm by Mapping a Conformational Epitope of Bla g 2. International Archives of Allergy and Immunology, 2012, 157, 323-330.	2.1	19
68	A Human IgE Antibody Binding Site on Der p 2 for the Design of a Recombinant Allergen for Immunotherapy. Journal of Immunology, 2019, 203, 2545-2556.	0.8	19
69	Variability in German Cockroach Extract Composition Greatly Impacts T Cell Potency in Cockroach-Allergic Donors. Frontiers in Immunology, 2019, 10, 313.	4.8	19
70	Identification of the aminoâ€terminal fragment of Ara h 1 as a major target of the IgEâ€binding activity in the basic peanut protein fraction. Clinical and Experimental Allergy, 2020, 50, 401-405.	2.9	19
71	Identification of a Novel Cat Allergen – Cystatin. International Archives of Allergy and Immunology, 2001, 124, 55-56.	2.1	17
72	Strategies to Query and Display Allergy-Derived Epitope Data from the Immune Epitope Database. International Archives of Allergy and Immunology, 2013, 160, 334-345.	2.1	16

#	Article	IF	CITATIONS
73	Technological Innovations for High-Throughput Approaches to In Vitro Allergy Diagnosis. Current Allergy and Asthma Reports, 2015, 15, 36.	5.3	16
74	Keeping Allergen Names Clear and Defined. Frontiers in Immunology, 2019, 10, 2600.	4.8	16
75	Every Cockroach Is Beautiful to Its Mother. International Archives of Allergy and Immunology, 2013, 161, 289-292.	2.1	15
76	Interfaces Between Allergen Structure and Diagnosis: Know Your Epitopes. Current Allergy and Asthma Reports, 2015, 15, 506.	5.3	15
77	Are dust mite allergens more abundant and/or more stable than other Dermatophagoides pteronyssinus proteins?. Journal of Allergy and Clinical Immunology, 2017, 139, 1030-1032.e1.	2.9	15
78	Development of COVID-19 vaccine using a dual Toll-like receptor ligand liposome adjuvant. Npj Vaccines, 2021, 6, 137.	6.0	15
79	Cockroach and other inhalant insect allergens. Clinical Allergy and Immunology, 2008, 21, 183-200.	0.7	12
80	Solubilization and Characterization of a Growth Hormone Secretagogue Receptor from Porcine Anterior Pituitary Membranes. Biochemical and Biophysical Research Communications, 1996, 225, 939-945.	2.1	11
81	Human IgE monoclonal antibody recognition of mite allergen Der p 2 defines structural basis of an epitope for IgE cross-linking and anaphylaxis <i>in vivo</i> . , 2022, 1, .		11
82	Can knowledge of the molecular structure of allergens improve immunotherapy?. Current Opinion in Allergy and Clinical Immunology, 2001, 1, 549-554.	2.3	10
83	Molecular cloning and expression of Cro s 1: an occupational allergen from saffron pollen (Crocus) Tj ETQq1 1 0.	784314 rg 1.4	gBJ /Overlo <mark>ck</mark>
84	Cloning and characterization of tropomyosin from the mite Chortoglyphus arcuatus. Molecular Immunology, 2015, 68, 634-640.	2.2	8
85	Functional Properties of Cloned Allergens from Dust Mite, Cockroach, and Cat. Allergy and Clinical Immunology International, 2001, 13, 0162-0169.	0.3	8
86	Cockroach and other inhalant insect allergens. , 2020, , 237-255.		8
87	New Frontiers: Precise Editing of Allergen Genes Using CRISPR. Frontiers in Allergy, 2021, 2, 821107.	2.8	7
88	Characterization of an anti-Bla g 1 scFv: Epitope mapping and cross-reactivity. Molecular Immunology, 2014, 59, 200-207.	2.2	6
89	Structural Analysis of Recent Allergen-Antibody Complexes and Future Directions. Current Allergy and Asthma Reports, 2019, 19, 17.	5.3	6
90	Heterogeneity of magnitude, allergen immunodominance, and cytokine polarization of cockroach allergenâ€specific T cell responses in allergic sensitized children. Clinical and Translational Allergy, 2021, 11, e12073.	3.2	6

#	Article	IF	CITATIONS
91	Molecular Biology of Indoor Allergens. Clinical Reviews in Allergy and Immunology, 2000, 18, 265-284.	6.5	5
92	Crossâ€reactivity in allergy: A doubleâ€edged sword. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 9-11.	5.7	4
93	IgE and T Cell Reactivity to a Comprehensive Panel of Cockroach Allergens in Relation to Disease. Frontiers in Immunology, 2020, 11, 621700.	4.8	4
94	Source characterization and molecular structure of cockroach allergens. Revue Francaise D'allergologie Et D'immunologie Clinique, 1998, 38, 842-845.	0.1	3
95	Molecular Structure of Cockroach Allergens. International Archives of Allergy and Immunology, 2001, 124, 87-89.	2.1	1
96	Cockroach Allergen Bla g 2 Dimerizes in a Crystal Complex with an Antibody Fragment. Journal of Allergy and Clinical Immunology, 2007, 119, S104.	2.9	1
97	Mapping of Antigenic Determinants on Bla g 2 surface. Journal of Allergy and Clinical Immunology, 2007, 119, S105.	2.9	1
98	The Der p 7 Crystal Structure Reveals Similarities to Innate Immune Proteins. Journal of Allergy and Clinical Immunology, 2010, 125, AB188.	2.9	1
99	Structural Analysis Reveals Molecular Basis for Interactions of Group 1 Allergens with Species Specific and Cross-Reactive Antibodies. Journal of Allergy and Clinical Immunology, 2013, 131, AB15.	2.9	1
100	Antigenic Determinants On Der p 1 Identified By Mutagenesis Analysis Based On The Structure Of Allergen-Antibody Complexes. Journal of Allergy and Clinical Immunology, 2014, 133, AB164.	2.9	1
101	Analysis of GST Allergen Cross-Reactivity in a North American Population for Molecular Diagnosis. Journal of Allergy and Clinical Immunology, 2015, 135, AB187.	2.9	1
102	Structural, Serological, and Genomic Analyses of the Major Mite Allergen Der p 23. Journal of Allergy and Clinical Immunology, 2016, 137, AB267.	2.9	1
103	First Naturally Occurring Human IgE Antibody Against Mite Allergen Der p 2. Journal of Allergy and Clinical Immunology, 2017, 139, AB260.	2.9	1
104	Variability in German Cockroach Extract Composition Has A Great Impact On T Cell Potency In Cockroach-Allergic Donors. Journal of Allergy and Clinical Immunology, 2018, 141, AB199.	2.9	1
105	Molecular Biology of Allergens: Structure and Immune Recognition. , 2009, , 265-289.		1
106	Target size analysis of an avermectin binding site from Drosophila melanogaster. BBA - Proteins and Proteomics, 1997, 1339, 233-238.	2.1	0
107	847 Expression of a recombinant German cockroach allergen Bla g 1 with IgE reactivity comparable to the natural allergen. Journal of Allergy and Clinical Immunology, 2000, 105, S288-S289.	2.9	0
108	Allergen-specific monoclonal antibodies directed against the major peanut allergens Ara h 1 and Ara h 2. Journal of Allergy and Clinical Immunology, 2002, 109, S286-S286.	2.9	0

#	Article	IF	CITATIONS
109	Validation of Phage Display and Computational Algorithm for Mapping Conformational Ige Epitopes. Journal of Allergy and Clinical Immunology, 2008, 121, S213-S213.	2.9	0
110	American Cockroach Allergen rPer a 3 Expressed in Pichia pastoris. Journal of Allergy and Clinical Immunology, 2010, 125, AB146.	2.9	0
111	IgE Antibody Binding Sites On Mite Group I Allergens Defined By X-ray Crystallography And Site-directed Mutagenesis. Journal of Allergy and Clinical Immunology, 2011, 127, AB265-AB265.	2.9	0
112	Mapping antigenic determinants for the design of immunotherapeutic tools for allergic disease. Clinical Biochemistry, 2011, 44, S21.	1.9	0
113	Human Basophils Express Novel TSLPR Variants Including a Putative Secreted Form. Journal of Allergy and Clinical Immunology, 2013, 131, AB102.	2.9	0
114	Strategies to Query and Display Allergy-Derived Epitope Data From the Immune Epitope Database (IEDB). Journal of Allergy and Clinical Immunology, 2013, 131, AB209.	2.9	0
115	The Cockroach Allergen Bla g 1 Forms Alpha Helical Capsules with an Internal Lipid Binding Cavity: Implications for Allergenicity. Journal of Allergy and Clinical Immunology, 2013, 131, AB16.	2.9	0
116	De Novo Creation of an Antibody Binding Epitope On Group 1 Mite Allergens. Journal of Allergy and Clinical Immunology, 2013, 131, AB16.	2.9	0
117	Reply. Journal of Allergy and Clinical Immunology, 2014, 134, 762-763.	2.9	0
118	Epitope Mapping Of An Anti-Bla g 1 ScFv Used For Cockroach Allergen Quantitation. Journal of Allergy and Clinical Immunology, 2014, 133, AB100.	2.9	0
119	Antigenic Analysis Of The Major Cockroach Allergen Bla g 5 and Its Dust Mite Homolog Der p 8. Journal of Allergy and Clinical Immunology, 2014, 133, AB100.	2.9	0
120	Bla g 2 Hypoallergens Retaining the Native Fold and Capacity to Modulate T Cell Reactivity Provide Candidates for Cockroach Immunotherapy. Journal of Allergy and Clinical Immunology, 2015, 135, AB165.	2.9	0
121	Potency Of German Cockroach Extracts For IgE Reactivity Depends On Allergen Content And Allergen-specific IgE Titers Of The Cockroach Allergic Patient. Journal of Allergy and Clinical Immunology, 2018, 141, AB108.	2.9	0

122 Allergens. , 2016, , 281-289.

0