List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6572597/publications.pdf Version: 2024-02-01

<u>Υπηγιαν Γιμ</u>

#	Article	IF	CITATIONS
1	Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries. Journal of Energy Chemistry, 2020, 43, 220-235.	7.1	272
2	A cation/anion co-doped Li1.12Na0.08Ni0.2Mn0.6O1.95F0.05 cathode for lithium ion batteries. Nano Energy, 2019, 58, 786-796.	8.2	222
3	Density Functional Theory Calculations for Insight into the Heterocatalyst Reactivity and Mechanism in Persulfate-Based Advanced Oxidation Reactions. ACS Catalysis, 2021, 11, 11129-11159.	5.5	190
4	An integrated surface coating strategy to enhance the electrochemical performance of nickel-rich layered cathodes. Nano Energy, 2022, 91, 106665.	8.2	143
5	Enhanced Electrochemical Performance of Ni-Rich Cathode Materials with Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃ Coating. ACS Sustainable Chemistry and Engineering, 2020, 8, 5819-5830.	3.2	118
6	Enhanced Electrochemical Performance of Li-Rich Layered Cathode Materials by Combined Cr Doping and LiAlO ₂ Coating. ACS Sustainable Chemistry and Engineering, 2019, 7, 2225-2235.	3.2	116
7	Effect of carbon nanotube on the electrochemical performance of C-LiFePO4/graphite battery. Journal of Power Sources, 2008, 184, 522-526.	4.0	106
8	Multi-layered carbon coated Si-based composite as anode for lithium-ion batteries. Powder Technology, 2018, 323, 294-300.	2.1	97
9	Synthesis and Mechanism of High Structural Stability of Nickel-Rich Cathode Materials by Adjusting Li-Excess. ACS Applied Materials & Interfaces, 2020, 12, 40393-40403.	4.0	93
10	Recent Progress in Lithium Lanthanum Titanate Electrolyte towards All Solid-State Lithium Ion Secondary Battery. Critical Reviews in Solid State and Materials Sciences, 2019, 44, 265-282.	6.8	69
11	Electrochemical performance of Li1.2Ni0.2Mn0.6O2 coated with a facilely synthesized Li1.3Al0.3Ti1.7(PO4)3. Journal of Power Sources, 2018, 403, 27-37.	4.0	64
12	Improved Cycling Stability of Na-Doped Cathode Materials Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ via a Facile Synthesis. ACS Sustainable Chemistry and Engineering, 2018, 6, 13045-13055.	3.2	56
13	Electrochemistry and redox characterization of rock-salt-type lithium metal oxides Li1+z/3Ni1/2-z/2Ti1/2+z/6O2 for Li-ion batteries. Journal of Alloys and Compounds, 2019, 773, 1-10.	2.8	54
14	Improving the Structure Stability of LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ by Double Modification of Tantalum Surface Coating and Doping. ACS Applied Energy Materials, 2021, 4, 8641-8652.	2.5	52
15	Investigation the electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathode material with ZnAl2O4 coating for lithium ion batteries. Journal of Alloys and Compounds, 2016, 685, 523-532.	2.8	50
16	Carbon-coated cation-disordered rocksalt-type transition metal oxide composites for high energy Li-ion batteries. Ceramics International, 2021, 47, 1758-1765.	2.3	50
17	Oxide-based cathode materials for rechargeable zinc ion batteries: Progresses and challenges. Journal of Energy Chemistry, 2021, 57, 516-542.	7.1	48
18	Influence of Nb Doping on Electrochemical Performance of Nanostructured Cation Disordered Li _{1+<i>x</i>/100} Ni _{1/2–<i>x</i>/100} Ti _{1/2–<i>x</i>/100} Nb	<i>x/j100</i>	O <sub< td=""></sub<>

Li_{1+<i>x</i>/100}Ni_{1/2â€"<i>x</i>/100}Ti_{1/2â€"<i>x</i>/100}Nb_{<i>x</i>/100}O<sub> Composites Cathode for Li-lon Batteries. Journal of Nanoscience and Nanotechnology, 2020, 20, 452-459.

#	Article	IF	CITATIONS
19	Revisiting recent and traditional strategies for surface protection of Zn metal anode. Journal of Power Sources, 2022, 525, 231122.	4.0	41
20	Enhanced electrochemical performances of layered cathode material Li1.5Ni0.25Mn0.75O2.5 by coating with LiAlO2. Journal of Alloys and Compounds, 2015, 638, 1-6.	2.8	35
21	Influence of Li content on the structure and electrochemical performance of Li1+xNi0.25Mn0.75O2.25+x/2 cathode for Li-ion battery. Journal of Power Sources, 2014, 248, 679-684.	4.0	33
22	Silicon@graphene composite prepared by spray–drying method as anode for lithium ion batteries. Journal of Electroanalytical Chemistry, 2019, 844, 86-90.	1.9	32
23	Synthesis and Redox Mechanism of Cation-Disordered, Rock-Salt Cathode-Material Li–Ni–Ti–Nb–O Compounds for a Li-Ion Battery. ACS Applied Materials & Interfaces, 2019, 11, 35777-35787.	4.0	31
24	Self-sacrificial-reaction guided formation of hierarchical electronic/ionic conductive shell enabling high-performance nano-silicon anode. Chemical Engineering Journal, 2021, 415, 128998.	6.6	31
25	Sodium ion stabilized ammonium vanadate as a high-performance aqueous zinc-ion battery cathode. Chemical Engineering Journal, 2022, 446, 137090.	6.6	31
26	High-rate capability of columbite CuNb2O6 anode materials for lithium-ion batteries. Materials Letters, 2021, 284, 128915.	1.3	30
27	Improvement of storage performance of LiMn2O4/graphite battery with AlF3-coated LiMn2O4. Ionics, 2013, 19, 1241-1246.	1.2	26
28	Synthesis of a novel hexagonal porous TT-Nb2O5 via solid state reaction for high-performance lithium ion battery anodes. Journal of Central South University, 2020, 27, 3625-3636.	1.2	26
29	Design and tailoring of carbon-Al2O3 double coated nickel-based cation-disordered cathodes towards high-performance Li-ion batteries. Nano Energy, 2022, 96, 107071.	8.2	26
30	Synthesis and electrochemical properties of cation-disordered Li-Ni-Ti-O compounds as cathode material for lithium ion batteries. Journal of Alloys and Compounds, 2017, 728, 659-668.	2.8	22
31	High-rate capability of carbon-coated micron-sized hexagonal TT-Nb2O5 composites for lithium-ion battery. Ceramics International, 2021, 47, 15400-15407.	2.3	21
32	Investigation the electrochemical performance of layered cathode material Li 1.2 Ni 0.2 Mn 0.6 O 2 coated with Li 4 Ti 5 O 12. Advanced Powder Technology, 2016, 27, 1481-1487.	2.0	20
33	Enhanced structure and electrochemical stability of single crystal nickel-rich cathode material by La2Li0.5Co0.5O4 surface coating. Ceramics International, 2022, 48, 17548-17555.	2.3	20
34	Improvement electrochemical performance of Li1.5Ni0.25Mn0.75O2.5 with Li4Ti5O12 coating. Ionics, 2014, 20, 739-745.	1.2	19
35	Improvement the electrochemical performance of Cr doped layered-spinel composite cathode material Li 1.1 Ni 0.235 Mn 0.735 Cr 0.03 O 2.3 with Li 4 Ti 5 O 12 coating. Ceramics International, 2017, 43, 8800-8808.	2.3	19
36	Rechargeable hybrid organic Zn battery (ReHOZnB) with non-flammable electrolyte. Journal of Electroanalytical Chemistry, 2022, 904, 115949.	1.9	19

#	Article	IF	CITATIONS
37	Effect of cooling method on the electrochemical performance of layered-spinel composite cathode Li1.1Ni0.25Mn0.75O2.3. Journal of Alloys and Compounds, 2015, 646, 112-118.	2.8	15
38	Synthesis and electrochemical performance of Li3NbO4-based cation-disordered rock-salt cathode materials for Li-ion batteries. Journal of Alloys and Compounds, 2019, 797, 961-969.	2.8	12
39	Metallurgy of aluminum-inspired formation of aluminosilicate-coated nanosilicon for lithium-ion battery anode. Rare Metals, 2022, 41, 1880-1888.	3.6	12
40	Comparison of structural and electrochemical properties of LiNi0.8Co0.15Al0.05O2 with Li site doping by different cations. Applied Surface Science, 2022, 599, 153933.	3.1	11
41	Performance and capacity fading reason of LiMn2O4/graphite batteries after storing at high temperature. Rare Metals, 2009, 28, 322-327.	3.6	10
42	High cycling performance Si/CNTs@C composite material prepared by spray–drying method. Ionics, 2017, 23, 405-410.	1.2	10
43	Effect of binders on performance of Si/C composite as anode for Li-ion batteries. Ionics, 2019, 25, 2103-2109.	1.2	10
44	Overcharge performance of LiMn2O4/graphite battery with large capacity. Central South University, 2009, 16, 763-767.	0.5	8
45	Improving the electrochemical performance of LiMn2O4/graphite batteries using LiF additive during fabrication. Rare Metals, 2011, 30, 120-125.	3.6	7
46	Improvement of electrochemical performance of layered manganese enriched electrode material with the coating of Ni0.25Mn0.75Ox composite oxides. Journal of Alloys and Compounds, 2014, 605, 1-6.	2.8	7
47	Investigation of the structural and electrochemical performance of Li1.2Ni0.2Mn0.6O2 with Cr doping. lonics, 2018, 24, 2251-2259.	1.2	7
48	Comparison of fluorine sources on the electrochemical property of Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ cathode materials. Functional Materials Letters, 2020, 13, 2050027.	0.7	7
49	Facile synthesis of Si/NiSi2/C composite derived from metal-organic frameworks for high-performance lithium-ion battery anode. Journal of Electroanalytical Chemistry, 2020, 873, 114398.	1.9	7
50	Al2O3 coating for improving thermal stability performance of manganese spinel battery. Central South University, 2011, 18, 1844-1848.	0.5	6
51	Sphere-like TiO2/Si anode material with superior performance for lithium ion batteries. Ionics, 2020, 26, 5349-5355.	1.2	5
52	Storage performance with different charged state of manganese spinel battery. lonics, 2012, 18, 643-648.	1.2	4
53	Synthesis and performance of micron-sized hexagonal W0.025Nb1.97O5 for high-rate lithium-ion batteries. Ceramics International, 2022, 48, 27815-27822.	2.3	4
54	Facile preparation of SGC composite as anode for lithium-ion batteries. Ionics, 2018, 24, 2575-2581.	1.2	2

#	Article	IF	CITATIONS
55	Improvement the electrochemical performance of Li1.2Ni0.2Mn0.6O2 electrode with AlF3 added. Journal of Shanghai Jiaotong University (Science), 2012, 17, 697-700.	0.5	0
56	Effect of Hydrofluoric Acid Etching on Performance of Si/C Composite as Anode Material for Lithium-Ion Batteries. Journal of Nanomaterials, 2018, 2018, 1-6.	1.5	0
57	A facile fabrication of nanometer tetragonal rod–like SnO2 as anode for lithium ion batteries. Ionics, 2021, 27, 4731-4737.	1.2	0