Jianxiang Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/657246/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Corresponding-states model for the correlation and prediction of the surface tension of hydrocarbons. International Journal of Modern Physics B, 2022, 36, .	1.0	0
2	New corresponding states correlation for the temperature-dependent surface tension of refrigerant liquids. Modern Physics Letters B, 2022, 36, .	1.0	0
3	Corresponding-state principle model for the correlation of temperature dependent difference of coexisted densities of refrigerants at equilibrium. Fluid Phase Equilibria, 2022, 560, 113501.	1.4	2
4	Surface Tension for Silanes, Refrigerants, and Carboxylic Acids: Simple Corresponding State Correlations versus DIPPR Data. ACS Omega, 2021, 6, 9940-9947.	1.6	3
5	New correlation for the temperature dependent viscosity of saturated refrigerants liquids. Fluid Phase Equilibria, 2021, 539, 113029.	1.4	1
6	Vaporization enthalpy of silanes fluids: A new correlation based on the corresponding states principle. Fluid Phase Equilibria, 2021, 548, 113186.	1.4	2
7	Equations of state for the hard disk fluids. Molecular Physics, 2020, 118, e1687948.	0.8	3
8	Corresponding state principle based correlation for the surface tension of carboxylic acids. Fluid Phase Equilibria, 2020, 506, 112421.	1.4	5
9	Predicting maximally random jammed packing density of non-spherical hard particles via analytical continuation of fluid equation of state. Physical Chemistry Chemical Physics, 2020, 22, 22635-22644.	1.3	3
10	Corresponding state principle based correlation for the thermal conductivity of saturated refrigerants liquids from Ttr to 0.90Tc. Fluid Phase Equilibria, 2020, 509, 112459.	1.4	12
11	Performance of the asymptotic expansion method to derive equations of state for hard polyhedron fluids. Physical Chemistry Chemical Physics, 2020, 22, 10360-10367.	1.3	5
12	Corresponding-States Model for the Correlation and Prediction of the Surface Tension of Silanes. Industrial & Engineering Chemistry Research, 2020, 59, 6336-6344.	1.8	6
13	Three-parameter correlation for the surface tension of saturated liquids. Modern Physics Letters B, 2020, 34, 2050107.	1.0	2
14	Geometric Dependence of 3D Collective Cancer Invasion. Biophysical Journal, 2020, 118, 1177-1182.	0.2	27
15	Three-parameter correlation for the temperature dependent thermal conductivity of saturated liquids. Fluid Phase Equilibria, 2020, 514, 112563.	1.4	7
16	Absorbing–active transition in a multi-cellular system regulated by a dynamic force network. Soft Matter, 2019, 15, 6938-6945.	1.2	12
17	Equation of state for the hard tetrahedron fluid at stable state. International Journal of Modern Physics B, 2019, 33, 1950136.	1.0	0
18	New equations of state for the hard polyhedron fluids. Physical Chemistry Chemical Physics, 2019, 21, 13109-13115	1.3	14

JIANXIANG TIAN

#	Article	IF	CITATIONS
19	Equations of the state of hard sphere fluids based on recent accurate virial coefficients <i>B</i> ₅ – <i>B</i> ₁₂ . Physical Chemistry Chemical Physics, 2019, 21, 13070-13077.	1.3	20
20	A new one-parameter correlation for the surface tension of saturated liquids. International Journal of Modern Physics B, 2019, 33, 1950294.	1.0	7
21	A new corresponding state-based correlation forÂtheÂsurfaceÂtensionÂofÂorganic fatty acids. Modern Physics Letters B, 2018, 32, 1750361.	1.0	3
22	A new correlation in predicting temperature-dependent viscosity of saturated liquids. Modern Physics Letters B, 2017, 31, 1750014.	1.0	4
23	New corresponding-states correlation model for the surface tension of refrigerants. Journal of Chemical Thermodynamics, 2017, 110, 201-210.	1.0	21
24	Corresponding state-based correlations for the surface tensionÂofÂsaturated fluids. Modern Physics Letters B, 2017, 31, 1750110.	1.0	7
25	Surface tension of refrigerants: A new correlation using the boiling point as reference. Fluid Phase Equilibria, 2017, 442, 68-80.	1.4	17
26	Corresponding state-based correlations for the temperature-dependent surface tension of saturated hydrocarbons. Modern Physics Letters B, 2017, 31, 1750259.	1.0	4
27	Weibull-type correlation for the surface tension of common fluids. Journal of Thermal Analysis and Calorimetry, 2016, 126, 1603-1613.	2.0	12
28	New correlation for the temperature-dependent viscosity for saturated liquids. Modern Physics Letters B, 2016, 30, 1650399.	1.0	3
29	Oriented collagen fibers direct tumor cell intravasation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11208-11213.	3.3	279
30	Contribution to modeling the viscosity Arrhenius-type equation for saturated pure fluids. International Journal of Modern Physics B, 2016, 30, 1650202.	1.0	6
31	Lielmezs–Herrick correlation for the temperature-dependent surface tension of hydrocarbons. International Journal of Modern Physics B, 2016, 30, 1650154.	1.0	8
32	A Geometric-Structure Theory for Maximally Random Jammed Packings. Scientific Reports, 2015, 5, 16722.	1.6	17
33	New size-expanded RNA nucleobase analogs: A detailed theoretical study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 140, 407-415.	2.0	3
34	Equations of state for fluids based on hard sphere repulsion. International Journal of Modern Physics B, 2015, 29, 1550089.	1.0	1
35	Surface Tension of Refrigerants—Selection of Data and Recommended Correlations. Journal of Physical and Chemical Reference Data, 2015, 44,	1.9	28
36	New generalized corresponding states correlation for surface tension of normal saturated liquids. International Journal of Modern Physics B, 2015, 29, 1550156.	1.0	16

JIANXIANG TIAN

#	Article	IF	CITATIONS
37	Corresponding states correlation for temperature dependent surface tension of normal saturated liquids. International Journal of Modern Physics B, 2014, 28, 1450169.	1.0	17
38	Hetero-ring-expansion design for purine analogs: A theoretical study on the structural, electronic, and excited-state properties. Chemical Physics Letters, 2014, 597, 69-74.	1.2	8
39	Structural, electronic, and photophysical properties of thieno-expanded tricyclic purine analogs: a theoretical study. Physical Chemistry Chemical Physics, 2014, 16, 4338.	1.3	6
40	Photoelectric Hybrid Current Sensor Combination of LPCT and FFI. IEEE Photonics Technology Letters, 2014, 26, 2476-2479.	1.3	12
41	Improved Correlation for Viscosity from Surface Tension Data for Saturated Normal Fluids. Industrial & Engineering Chemistry Research, 2014, 53, 9499-9505.	1.8	20
42	Empirical correlation of the surface tension versus the viscosity for saturated normal liquids. Fluid Phase Equilibria, 2013, 352, 54-63.	1.4	17
43	A Maple Program to Derive New Equations of State for Hard-Sphere Fluids. Computing in Science and Engineering, 2013, 15, 1-1.	1.2	1
44	DFT investigation of the intermolecular interactions of a thieno-separated tricyclic guanine analog with gold nanoclusters. Computational and Theoretical Chemistry, 2013, 1019, 1-10.	1.1	6
45	New correlations between viscosity and surface tension for saturated normal fluids. Fluid Phase Equilibria, 2013, 360, 298-304.	1.4	35
46	Ideal gas contribution to the isobaric heat capacity of refrigerants: Poling et al.'s polynomial correlation vs DIPPR data. Journal of Chemical Thermodynamics, 2013, 61, 90-99.	1.0	6
47	Excited State Properties of Naphtho-Homologated xxDNA Bases and Effect of Methanol Solution, Deoxyribose, and Base Pairing. Journal of Physical Chemistry B, 2013, 117, 3983-3992.	1.2	11
48	INVESTIGATION OF THE PERTURBED VIRIAL EQUATIONS WITH ARBITRARY TEMPERATURE-DEPENDENT SECOND AND THIRD VIRIAL COEFFICIENTS. International Journal of Modern Physics B, 2011, 25, 2593-2600.	1.0	2
49	New Closed Virial Equation of State for Hard-Sphere Fluids. Journal of Physical Chemistry B, 2010, 114, 13399-13402.	1.2	23
50	New virial equation of state for hard-disk fluids. Physical Chemistry Chemical Physics, 2010, 12, 13597.	1.3	4
51	Asymptotic expansion based equation of state for hard-disk fluids offering accurate virial coefficients. Physical Chemistry Chemical Physics, 2010, 12, 5248.	1.3	10
52	A PROPERTY OF THE SATURATED VAPOR PRESSURE: RESULTS FROM EQUATIONS OF STATE. Modern Physics Letters B, 2009, 23, 3091-3096.	1.0	4
53	THE TEMPERATURE-DEPENDENT VAPORIZATION ENTHALPY IN EQUILIBRIUM VAPOR–LIQUID PHASE TRANSITIONS: ITS UNIVERSAL BEHAVIOR FOR SIMPLE FLUIDS. Modern Physics Letters B, 2009, 23, 1333-1344.	1.0	3
54	Equation of state for hard-sphere fluids offering accurate virial coefficients. Physical Chemistry Chemical Physics, 2009, 11, 11213.	1.3	25

JIANXIANG TIAN

#	Article	IF	CITATIONS
55	EQUATIONS OF STATE FOR FLUIDS: THE LIQUID-VAPOR EQUILIBRIUM (LVE). International Journal of Modern Physics B, 2008, 22, 5335-5347.	1.0	6
56	THE TEMPERATURE DEPENDENT ENTHALPY OF VAPORIZATION OF PURE SUBSTANCES. Modern Physics Letters B, 2008, 22, 2509-2515.	1.0	1
57	An Application of the Linear Isotherm Regularity (LIR). Journal of Physical Chemistry B, 2007, 111, 1721-1723.	1.2	3
58	Equations of State for Fluids:  Empirical Temperature Dependence of the Second Virial Coefficients. Journal of Physical Chemistry B, 2007, 111, 10970-10974.	1.2	9
59	Comments on "The Second Virial Coefficient and the Redlichâ `Kwong Equation― Industrial & Engineering Chemistry Research, 2007, 46, 6375-6375.	1.8	1
60	The real scalar field in extreme RNdS space. General Relativity and Gravitation, 2005, 37, 1323-1330.	0.7	5
61	LIQUID–GAS PHASE TRANSITION TO FIRST ORDER OF AN ARGON-LIKE FLUID MODELED BY MIE POTENTIAL. International Journal of Modern Physics B, 2005, 19, 3161-3172.	1.0	1
62	LIQUID–GAS PHASE TRANSITION TO FIRST ORDER OF AN ARGON-LIKE FLUID MODELED BY THE HARD-CORE SIMILAR SUTHERLAND POTENTIAL. International Journal of Modern Physics B, 2004, 18, 2057-2069.	1.0	7
63	AN EXTENSION OF THE VAN DER WAALS EQUATION OF STATE. Modern Physics Letters B, 2004, 18, 213-220.	1.0	6
64	Letter: The Real Scalar Field in Schwarzschild-de Sitter Spacetime. General Relativity and Gravitation, 2003, 35, 1473-1480.	0.7	22