## **Christian Messier**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6572321/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | For the sake of resilience and multifunctionality, let's diversify planted forests!. Conservation Letters, 2022, 15, e12829.                                                                                                     | 5.7 | 124       |
| 2  | Trimming influences tree light interception and space exploration: contrasted responses of two cultivars of Fraxinus pennsylvanica at various scales of their architecture. Trees - Structure and Function, 2022, 36, 1067-1083. | 1.9 | 1         |
| 3  | Tree diversity effects on soil microbial biomass and respiration are context dependent across forest diversity experiments. Global Ecology and Biogeography, 2022, 31, 872-885.                                                  | 5.8 | 16        |
| 4  | Light heterogeneity affects understory plant species richness in temperate forests supporting the heterogeneity–diversity hypothesis. Ecology and Evolution, 2022, 12, e8534.                                                    | 1.9 | 26        |
| 5  | Perspectives: Thirty years of triad forestry, a critical clarification of theory and recommendations for implementation and testing. Forest Ecology and Management, 2022, 510, 120103.                                           | 3.2 | 20        |
| 6  | Managing for the unexpected: Building resilient forest landscapes to cope with global change. Global<br>Change Biology, 2022, 28, 4323-4341.                                                                                     | 9.5 | 21        |
| 7  | A simple-to-use management approach to boost adaptive capacity of forests to global uncertainty.<br>Forest Ecology and Management, 2021, 481, 118692.                                                                            | 3.2 | 24        |
| 8  | Enhanced light interception and light use efficiency explain overyielding in young tree communities.<br>Ecology Letters, 2021, 24, 996-1006.                                                                                     | 6.4 | 24        |
| 9  | Direct and Indirect Effects of Forest Anthropogenic Disturbance on Above and Below Ground Communities and Litter Decomposition. Ecosystems, 2021, 24, 1716-1737.                                                                 | 3.4 | 9         |
| 10 | Complexifying the urban lawn improves heat mitigation and arthropod biodiversity. Urban Forestry and Urban Greening, 2021, 60, 127007.                                                                                           | 5.3 | 21        |
| 11 | Praise for diversity: A functional approach to reduce risks in urban forests. Urban Forestry and Urban<br>Greening, 2021, 62, 127157.                                                                                            | 5.3 | 31        |
| 12 | Exotics are more complementary over time in tree biodiversity–ecosystem functioning experiments.<br>Functional Ecology, 2021, 35, 2550.                                                                                          | 3.6 | 2         |
| 13 | Retention as an integrated biodiversity conservation approach for continuous-cover forestry in Europe. Ambio, 2020, 49, 85-97.                                                                                                   | 5.5 | 106       |
| 14 | The Potential of Agricultural Conversion to Shape Forest Fire Regimes in Mediterranean Landscapes.<br>Ecosystems, 2020, 23, 34-51.                                                                                               | 3.4 | 37        |
| 15 | Implications of contrasted above―and belowâ€ground biomass responses in a diversity experiment with trees. Journal of Ecology, 2020, 108, 405-414.                                                                               | 4.0 | 18        |
| 16 | Priority effects will impede range shifts of temperate tree species into the boreal forest. Journal of Ecology, 2020, 108, 1155-1173.                                                                                            | 4.0 | 21        |
| 17 | Determinants of delayed traumatic tree reiteration growth: Levels of branch growth control and insights for urban tree management, modeling and future research. Urban Forestry and Urban Greening, 2020, 47, 126541.            | 5.3 | 3         |
| 18 | Retention of tree-related microhabitats is more dependent on selection of habitat trees than their spatial distribution. European Journal of Forest Research, 2020, 139, 1015-1028.                                              | 2.5 | 16        |

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Functional traits influence biomass and productivity through multiple mechanisms in a temperate secondary forest. European Journal of Forest Research, 2020, 139, 959-968.                                                           | 2.5  | 37        |
| 20 | Convergence of urban forest and socio-economic indicators of resilience: A study of environmental inequality in four major cities in eastern Canada. Landscape and Urban Planning, 2020, 202, 103856.                                | 7.5  | 10        |
| 21 | Evaluating forest resilience to global threats using functional response traits and network properties. Ecological Applications, 2020, 30, e02095.                                                                                   | 3.8  | 28        |
| 22 | Optimizing Reduction Pruning of Trees Under Electrical Lines: The Influence of Intensity and Season of<br>Pruning on Epicormic Branch Growth and Wound Compartmentalization. Arboriculture and Urban<br>Forestry, 2020, 46, 432-449. | 0.6  | 4         |
| 23 | The functional complex network approach to foster forest resilience to global changes. Forest<br>Ecosystems, 2019, 6, .                                                                                                              | 3.1  | 167       |
| 24 | Sugar maple (Acer saccharum Marsh.) shoot architecture reveals coordinated ontogenetic changes<br>between shoot specialization and branching pattern. Trees - Structure and Function, 2019, 33, 1615-1625.                           | 1.9  | 5         |
| 25 | Evergreenness influences fine root growth more than tree diversity in a common garden experiment.<br>Oecologia, 2019, 189, 1027-1039.                                                                                                | 2.0  | 15        |
| 26 | Crown reaction and acclimation to cyclical V-trimming of city trees: An analysis using terrestrial laser scanning. Urban Forestry and Urban Greening, 2018, 29, 183-191.                                                             | 5.3  | 4         |
| 27 | Synthesis and future research directions linking tree diversity to growth, survival, and damage in a global network of tree diversity experiments. Environmental and Experimental Botany, 2018, 152, 68-89.                          | 4.2  | 113       |
| 28 | Moving forward in implementing green infrastructures: Stakeholder perceptions of opportunities and obstacles in a major North American metropolitan area. Cities, 2018, 81, 61-70.                                                   | 5.6  | 43        |
| 29 | Species-specific responses to forest soil inoculum in planted trees in an abandoned agricultural field.<br>Applied Soil Ecology, 2017, 112, 1-10.                                                                                    | 4.3  | 20        |
| 30 | Spatial complementarity in tree crowns explains overyielding in species mixtures. Nature Ecology and Evolution, 2017, 1, 63.                                                                                                         | 7.8  | 285       |
| 31 | Tree range expansion in eastern North America fails to keep pace with climate warming at northern range limits. Global Change Biology, 2017, 23, 3292-3301.                                                                          | 9.5  | 104       |
| 32 | Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature, 2017,<br>546, 145-147.                                                                                                               | 27.8 | 294       |
| 33 | Do temperate tree species diversity and identity influence soil microbial community function and composition?. Ecology and Evolution, 2017, 7, 7965-7974.                                                                            | 1.9  | 64        |
| 34 | Partitioning the effect of composition and diversity of tree communities on leaf litter decomposition and soil respiration. Oikos, 2017, 126, 959-971.                                                                               | 2.7  | 30        |
| 35 | Low Light Availability Associated with American Beech Is the Main Factor for Reduced Sugar Maple<br>Seedling Survival and Growth Rates in a Hardwood Forest of Southern Quebec. Forests, 2017, 8, 413.                               | 2.1  | 17        |
| 36 | Ectomycorrhizal fungal diversity and saprotrophic fungal diversity are linked to different tree community attributes in a fieldâ€based tree experiment. Molecular Ecology, 2016, 25, 4032-4046.                                      | 3.9  | 95        |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Functional identity is the main driver of diversity effects in young tree communities. Ecology Letters, 2016, 19, 638-647.                                                                                                   | 6.4 | 182       |
| 38 | Avoiding ecosystem collapse in managed forest ecosystems. Frontiers in Ecology and the Environment, 2016, 14, 561-568.                                                                                                       | 4.0 | 66        |
| 39 | Management of vegetation under electric distribution lines will affect the supply of multiple ecosystem services. Land Use Policy, 2016, 51, 66-75.                                                                          | 5.6 | 17        |
| 40 | Contributions of a global network of tree diversity experiments to sustainable forest plantations.<br>Ambio, 2016, 45, 29-41.                                                                                                | 5.5 | 203       |
| 41 | A framework towards a composite indicator for urban ecosystem services. Ecological Indicators, 2016, 60, 38-44.                                                                                                              | 6.3 | 83        |
| 42 | Tree phyllosphere bacterial communities: exploring the magnitude of intra- and inter-individual variation among host species. PeerJ, 2016, 4, e2367.                                                                         | 2.0 | 85        |
| 43 | Explaining forest productivity using tree functional traits and phylogenetic information: two sides of the same coin over evolutionary scale?. Ecology and Evolution, 2015, 5, 1774-1783.                                    | 1.9 | 35        |
| 44 | Nearâ€infrared spectroscopy ( <scp>NIRS</scp> ) predicts nonâ€structural carbohydrate concentrations in<br>different tissue types of a broad range of tree species. Methods in Ecology and Evolution, 2015, 6,<br>1018-1025. | 5.2 | 63        |
| 45 | Globally, functional traits are weak predictors of juvenile tree growth, and we do not know why.<br>Journal of Ecology, 2015, 103, 978-989.                                                                                  | 4.0 | 131       |
| 46 | From Management to Stewardship: Viewing Forests As Complex Adaptive Systems in an Uncertain<br>World. Conservation Letters, 2015, 8, 368-377.                                                                                | 5.7 | 183       |
| 47 | A general framework for the quantification and valuation of ecosystem services of tree-based intercropping systems. Agroforestry Systems, 2014, 88, 679-691.                                                                 | 2.0 | 61        |
| 48 | Advancing biodiversity–ecosystem functioning science using high-density tree-based experiments over<br>functional diversity gradients. Oecologia, 2014, 174, 609-621.                                                        | 2.0 | 86        |
| 49 | Diversity increases carbon storage and tree productivity in <scp>S</scp> panish forests. Global Ecology and Biogeography, 2014, 23, 311-322.                                                                                 | 5.8 | 237       |
| 50 | Can Boreal and Temperate Forest Management be Adapted to the Uncertainties of 21st Century Climate<br>Change?. Critical Reviews in Plant Sciences, 2014, 33, 251-285.                                                        | 5.7 | 88        |
| 51 | REVIEW: Can retention forestry help conserve biodiversity? A metaâ€analysis. Journal of Applied Ecology, 2014, 51, 1669-1679.                                                                                                | 4.0 | 314       |
| 52 | Root production of hybrid poplars and nitrogen mineralization improve following mounding of boreal Podzols. Canadian Journal of Forest Research, 2013, 43, 1092-1103.                                                        | 1.7 | 18        |
| 53 | Effects of Urbanization on Tree Species Functional Diversity in Eastern North America. Ecosystems, 2013, 16, 1487-1497.                                                                                                      | 3.4 | 51        |
| 54 | Do partial cuts create forest complexity? A new approach to measuring the complexity of forest patterns using photographs and the mean information gain. Forestry Chronicle, 2013, 89, 340-349.                              | 0.6 | 6         |

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Norway maple displays greater seasonal growth and phenotypic plasticity to light than native sugar maple. Tree Physiology, 2012, 32, 1339-1347.                                                                                             | 3.1 | 47        |
| 56 | Retention Forestry to Maintain Multifunctional Forests: A World Perspective. BioScience, 2012, 62, 633-645.                                                                                                                                 | 4.9 | 633       |
| 57 | Managing understory light conditions in boreal mixedwoods through variation in the intensity and spatial pattern of harvest: A modelling approach. Forest Ecology and Management, 2011, 261, 84-94.                                         | 3.2 | 61        |
| 58 | Juvenile growth of hybrid poplars on acidic boreal soil determined by environmental effects of soil preparation, vegetation control, and fertilization. Forest Ecology and Management, 2011, 261, 620-629.                                  | 3.2 | 48        |
| 59 | Structural changes and potential vertebrate responses following simulated partial harvesting of boreal mixedwood stands. Forest Ecology and Management, 2011, 261, 1362-1371.                                                               | 3.2 | 7         |
| 60 | The effect of biodiversity on tree productivity: from temperate to boreal forests. Global Ecology and Biogeography, 2011, 20, 170-180.                                                                                                      | 5.8 | 699       |
| 61 | Predicting understory maximum shrubs cover using altitude and overstory basal area in different<br>Mediterranean forests. European Journal of Forest Research, 2011, 130, 55-65.                                                            | 2.5 | 42        |
| 62 | Shade tolerance, canopy gaps and mechanisms of coexistence of forest trees. Oikos, 2010, 119, 475-484.                                                                                                                                      | 2.7 | 110       |
| 63 | The role of plantations in managing the world's forests in the Anthropocene. Frontiers in Ecology and the Environment, 2010, 8, 27-34.                                                                                                      | 4.0 | 409       |
| 64 | Comparing different forest zoning options for landscape-scale management of the boreal forest:<br>Possible benefits of the TRIAD. Forest Ecology and Management, 2010, 259, 418-427.                                                        | 3.2 | 83        |
| 65 | Forest processes from stands to landscapes: exploring model forecast uncertainties using cross-scale model comparison. Canadian Journal of Forest Research, 2010, 40, 2345-2359.                                                            | 1.7 | 11        |
| 66 | TRIAD zoning in Quebec: Experiences and results after 5 years. Forestry Chronicle, 2009, 85, 885-896.                                                                                                                                       | 0.6 | 74        |
| 67 | Resource and nonâ€resource root competition effects of grasses on early―versus lateâ€successional<br>trees. Journal of Ecology, 2009, 97, 548-554.                                                                                          | 4.0 | 49        |
| 68 | Effects of climate on occurrence and size of large fires in a northern hardwood landscape:<br>historical trends, forecasts, and implications for climate change in Témiscamingue, Québec. Applied<br>Vegetation Science, 2009, 12, 261-272. | 1.9 | 20        |
| 69 | Comparison of two plant functional approaches to evaluate natural restoration along an oldâ€field –<br>deciduous forest chronosequence. Journal of Vegetation Science, 2009, 20, 185-198.                                                   | 2.2 | 55        |
| 70 | Silviculture for old-growth attributes. Forest Ecology and Management, 2009, 258, 525-537.                                                                                                                                                  | 3.2 | 483       |
| 71 | Functional Relationships Between Old-Growth Forest Canopies, Understorey Light and Vegetation Dynamics. Ecological Studies, 2009, , 115-139.                                                                                                | 1.2 | 12        |
| 72 | Fire and the relative roles of weather, climate and landscape characteristics in the Great Lakes‣t.<br>Lawrence forest of Canada. Journal of Vegetation Science, 2008, 19, 57-66.                                                           | 2.2 | 35        |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Can plantations develop understory biological and physical attributes of naturally regenerated forests?. Biological Conservation, 2008, 141, 2461-2476.                                                                         | 4.1 | 86        |
| 74 | Beech regeneration of seed and root sucker origin: A comparison of morphology, growth, survival, and response to defoliation. Forest Ecology and Management, 2008, 255, 3659-3666.                                              | 3.2 | 36        |
| 75 | Crown openness as influenced by tree and site characteristics for yellow birch, sugar maple, and eastern hemlock. Canadian Journal of Forest Research, 2008, 38, 488-497.                                                       | 1.7 | 23        |
| 76 | A shade tolerance index for common understory species of northeastern North America. Ecological<br>Indicators, 2007, 7, 195-207.                                                                                                | 6.3 | 88        |
| 77 | How resilient are northern hardwood forests to human disturbance? An evaluation using a plant functional group approach. Ecoscience, 2007, 14, 259-271.                                                                         | 1.4 | 58        |
| 78 | Effect of a major canopy disturbance on the coexistence of Acer saccharum and Fagus grandifolia in the understorey of an old-growth forest. Journal of Ecology, 2007, 95, 458-467.                                              | 4.0 | 56        |
| 79 | Growth, allocation and leaf gas exchanges of hybrid poplar plants in their establishment phase on previously forested sites: effect of different vegetation management techniques. Annals of Forest Science, 2007, 64, 275-285. | 2.0 | 45        |
| 80 | The Effects of Spatial Legacies following Shifting Management Practices and Fire on Boreal Forest Age Structure. Ecosystems, 2007, 10, 1261-1277.                                                                               | 3.4 | 51        |
| 81 | Can forest management based on natural disturbances maintain ecological resilience?. Canadian<br>Journal of Forest Research, 2006, 36, 2285-2299.                                                                               | 1.7 | 338       |
| 82 | Overstory influences on light attenuation patterns and understory plant community diversity and composition in southern boreal forests of Quebec. Canadian Journal of Forest Research, 2006, 36, 2065-2079.                     | 1.7 | 109       |
| 83 | Fire and canopy species composition in the Great Lakes-St. Lawrence forest of Témiscamingue, Québec.<br>Forest Ecology and Management, 2006, 231, 27-37.                                                                        | 3.2 | 31        |
| 84 | Reconciling niche and neutrality: the continuum hypothesis. Ecology Letters, 2006, 9, 399-409.                                                                                                                                  | 6.4 | 635       |
| 85 | Sapling size influences shade tolerance ranking among southern boreal tree species. Journal of Ecology, 2006, 94, 471-480.                                                                                                      | 4.0 | 109       |
| 86 | Does shade improve light interception efficiency? A comparison among seedlings from shadeâ€ŧolerant<br>and â€ɨntolerant temperate deciduous tree species. New Phytologist, 2006, 172, 293-304.                                  | 7.3 | 62        |
| 87 | Growth, biomass allocation, and adventitious roots of balsam fir seedlings growing in closed-canopy stands. Ecoscience, 2006, 13, 89-94.                                                                                        | 1.4 | 3         |
| 88 | Early above- and below-ground responses of subboreal conifer seedlings to various levels of deciduous canopy removal. Canadian Journal of Forest Research, 2006, 36, 1891-1899.                                                 | 1.7 | 16        |
| 89 | Sustainable management of Canada's boreal forests: Progress and prospects. Ecoscience, 2006, 13, 234-248.                                                                                                                       | 1.4 | 51        |
| 90 | Light and tree size influence belowground development in yellow birch and sugar maple. Plant and Soil, 2005, 270, 321-330.                                                                                                      | 3.7 | 33        |

| #   | Article                                                                                                                                                                                                                       | IF                 | CITATIONS            |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|
| 91  | Interacting influence of light and size on aboveground biomass distribution in sub-boreal conifer saplings with contrasting shade tolerance. Tree Physiology, 2005, 25, 373-384.                                              | 3.1                | 44                   |
| 92  | Population structure and growth acclimation of mountain maple along a successional gradient in the southern boreal forest. Ecoscience, 2005, 12, 540-548.                                                                     | 1.4                | 23                   |
| 93  | Comparing composition and structure in old-growth and harvested (selection and diameter-limit) Tj ETQq1 1 0.78                                                                                                                | 34314 rgB<br>3.2   | T /Overlock 1<br>147 |
| 94  | Mountain maple and balsam fir early response to partial and clear-cut harvesting under aspen stands<br>of northern Quebec. Canadian Journal of Forest Research, 2004, 34, 2049-2059.                                          | 1.7                | 27                   |
| 95  | Consequences of various landscape-scale ecosystem management strategies and fire cycles on age-class structure and harvest in boreal forests. Canadian Journal of Forest Research, 2004, 34, 310-322.                         | 1.7                | 60                   |
| 96  | Understorey light profiles in temperate deciduous forests: recovery process following selection cutting. Journal of Ecology, 2004, 92, 328-338.                                                                               | 4.0                | 62                   |
| 97  | Physiological, morphological and allocational plasticity in understory deciduous trees: importance of plant size and light availability. Tree Physiology, 2004, 24, 775-784.                                                  | 3.1                | 155                  |
| 98  | Use of a spatially explicit individual-tree model (SORTIE/BC) to explore the implications of patchiness in structurally complex forests. Forest Ecology and Management, 2003, 186, 297-310.                                   | 3.2                | 128                  |
| 99  | Shoot growth and crown development: effect of crown position in three-dimensional simulations.<br>Tree Physiology, 2003, 23, 129-136.                                                                                         | 3.1                | 44                   |
| 100 | Do understory sapling respond to both light and below-ground competition?: a field experiment in a<br>north-eastern American hardwood forest and a literature review. Annals of Forest Science, 2003, 60,<br>749-756.         | 2.0                | 64                   |
| 101 | Does soil heterogeneity and compaction in ingrowth-cores affect growth and morphology of black spruce fine-roots?. Communications in Soil Science and Plant Analysis, 2002, 33, 1027-1037.                                    | 1.4                | 4                    |
| 102 | The effect of light availability and basal area on cone production in Abies balsamea and Picea glauca.<br>Canadian Journal of Botany, 2002, 80, 370-377.                                                                      | 1.1                | 47                   |
| 103 | Patterns of above- and below-ground response of understory conifer release 6 years after partial cutting. Canadian Journal of Forest Research, 2002, 32, 255-265.                                                             | 1.7                | 81                   |
| 104 | Growth and crown morphological responses of boreal conifer seedlings and saplings with<br>contrasting shade tolerance to a gradient of light and height. Canadian Journal of Forest Research,<br>2002, 32, 458-468.           | 1.7                | 142                  |
| 105 | Variation in canopy openness and light transmission following selection cutting in northern<br>hardwood stands: an assessment based on hemispherical photographs. Agricultural and Forest<br>Meteorology, 2002, 110, 217-228. | 4.8                | 93                   |
| 106 | Predictions of understorey light conditions in northern hardwood forests following<br>parameterization, sensitivity analysis, and tests of the SORTIE light model. Forest Ecology and<br>Management, 2002, 165, 235-248.      | 3.2                | 53                   |
| 107 | Application of the Functional-Structural Tree Model LIGNUM to Sugar Maple Saplings (Acer) Tj ETQq1 1 0.784314                                                                                                                 | ł rgBT /Ovi<br>2.9 | erlock 10 Tf<br>46   |
| 108 | Effects of light and intraspecific competition on growth and crown morphology of two size classes                                                                                                                             | 3.2                | 73                   |

3.273

of understory balsam fir saplings. Forest Ecology and Management, 2001, 140, 215-225.

| #   | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Adaptation of the LIGNUM model for simulations of growth and light response in Jack pine. Forest<br>Ecology and Management, 2001, 150, 279-291.                                                                                      | 3.2 | 22        |
| 110 | Temporal variations in the understorey photosynthetic photon flux density of a deciduous stand: the<br>effects of canopy development, solar elevation, and sky conditions. Agricultural and Forest<br>Meteorology, 2001, 106, 23-40. | 4.8 | 27        |
| 111 | Effects of light availability and sapling size on the growth, biomass allocation, and crown<br>morphology of understory sugar maple, yellow birch, and beech. Ecoscience, 2000, 7, 345-356.                                          | 1.4 | 85        |
| 112 | Light extinction coefficients specific to the understory vegetation of the southern boreal forest,<br>Quebec. Canadian Journal of Forest Research, 2000, 30, 168-177.                                                                | 1.7 | 82        |
| 113 | Leaf- and plant-level carbon gain in yellow birch, sugar maple, and beech seedlings from contrasting forest light environments. Canadian Journal of Forest Research, 2000, 30, 390-404.                                              | 1.7 | 43        |
| 114 | Effects of adventitious roots on age determination in Balsam fir ( <i>Abies balsamea</i> ) regeneration.<br>Canadian Journal of Forest Research, 2000, 30, 513-518.                                                                  | 1.7 | 11        |
| 115 | Evaluation of Fine Root Length and Diameter Measurements Obtained Using RHIZO Image Analysis.<br>Agronomy Journal, 1999, 91, 142-147.                                                                                                | 1.8 | 96        |
| 116 | Soil exploitation strategies of fine roots in different tree species of the southern boreal forest of eastern Canada. Canadian Journal of Forest Research, 1999, 29, 260-273.                                                        | 1.7 | 94        |
| 117 | Functional ecology of advance regeneration in relation to light in boreal forests. Canadian Journal of Forest Research, 1999, 29, 812-823.                                                                                           | 1.7 | 301       |
| 118 | Effects of light availability and sapling size on the growth and crown morphology of understory<br>Douglas-fir and lodgepole pine. Canadian Journal of Forest Research, 1999, 29, 222-231.                                           | 1.7 | 90        |
| 119 | Possible mechanisms of sugar maple regeneration failure and replacement by beech in the<br>Boisé-des-Muir old-growth forest, QuA©bec. Ecoscience, 1999, 6, 264-271.                                                                  | 1.4 | 47        |
| 120 | Soil e×ploitation strategies of fine roots in different tree species of the southern boreal forest of eastern Canada. Canadian Journal of Forest Research, 1999, 29, 260-273.                                                        | 1.7 | 121       |
| 121 | Comparison of various methods for estimating the mean growing season percent photosynthetic photon flux density in forests. Agricultural and Forest Meteorology, 1998, 92, 55-70.                                                    | 4.8 | 154       |
| 122 | Growth and morphological responses of yellow birch, sugar maple, and beech seedlings growing under a natural light gradient. Canadian Journal of Forest Research, 1998, 28, 1007-1015.                                               | 1.7 | 194       |
| 123 | Effects of overstory and understory vegetation on the understory light environment in mixed boreal forests. Journal of Vegetation Science, 1998, 9, 511-520.                                                                         | 2.2 | 297       |
| 124 | Abundance, growth and allometry of red raspberry (Rubus idaeus L.) along a natural light gradient in<br>a northern hardwood forest. Forest Ecology and Management, 1996, 81, 153-160.                                                | 3.2 | 58        |
| 125 | A simple and efficient method to estimate microsite light availability under a forest canopy. Canadian<br>Journal of Forest Research, 1996, 26, 151-154.                                                                             | 1.7 | 177       |
| 126 | Spatial and temporal variation in the Bight environment of developing Scots pine stands: the basis for<br>a quick and efficient method of characterizing Bight. Canadian Journal of Forest Research, 1995, 25,<br>343-354.           | 1.7 | 146       |

| #   | Article                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Effets d'un gradient de lumière sur la croissance en hauteur et la morphologie de la cime du sapin<br>baumier régénéré naturellement. Canadian Journal of Forest Research, 1995, 25, 878-885.                                                                          | 1.7 | 62        |
| 128 | Factors limiting early growth of western redcedar, western hemlock and Sitka spruce seedlings on<br>ericaceous-dominated clearcut sites in coastal British Columbia. Forest Ecology and Management,<br>1993, 60, 181-206.                                              | 3.2 | 49        |
| 129 | Above- and below-ground vegetation recovery in recently clearcut and burned sites dominated by<br>Gaultheria shallon in coastal British Columbia. Forest Ecology and Management, 1991, 46, 275-294.                                                                    | 3.2 | 57        |
| 130 | Photosynthetic photon flux density, red:far-red ratio, and minimum light requirement for survival of<br><i>Gaultheriashallon</i> in western red cedar–western hemlock stands in coastal British<br>Columbia. Canadian Journal of Forest Research, 1989, 19, 1470-1477. | 1.7 | 47        |
| 131 | Light quantity and quality on the forest floor of pioneer and climax stages in a birch–beech–sugar<br>maple stand. Canadian Journal of Forest Research, 1988, 18, 615-622.                                                                                             | 1.7 | 61        |
| 132 | Patterns of belowground overyielding and fineâ€root biomass in native and exotic angiosperms and gymnosperms. Oikos, 0, , .                                                                                                                                            | 2.7 | 1         |