List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6572226/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	InGaN-based red light-emitting diodes: from traditional to micro-LEDs. Japanese Journal of Applied Physics, 2022, 61, SA0809.	0.8	42
2	Recent progress in red light-emitting diodes by III-nitride materials. Semiconductor Science and Technology, 2022, 37, 013001.	1.0	42
3	Passivation of Surface States in GaN by NiO Particles. Crystals, 2022, 12, 211.	1.0	1
4	Study on the effect of size on InGaN red micro-LEDs. Scientific Reports, 2022, 12, 1324.	1.6	41
5	Analysis of the n-GaN electrochemical etching process and its mechanism in oxalic acid. RSC Advances, 2022, 12, 4648-4655.	1.7	10
6	InGaN-Based Orange-Red Resonant Cavity Light-Emitting Diodes. Journal of Lightwave Technology, 2022, 40, 4337-4343.	2.7	3
7	Microstructural analysis of N-polar InGaN directly grown on a ScAlMgO ₄ (0001) substrate. Applied Physics Express, 2022, 15, 065501.	1.1	12
8	Demonstration of 621-nm-wavelength InGaN-based single-quantum-well LEDs with an external quantum efficiency of 4.3% at 10.1 A/cm2. AIP Advances, 2022, 12, .	0.6	18
9	Optical properties of InGaN-based red multiple quantum wells. Applied Physics Letters, 2022, 120, .	1.5	6
10	InGaN-based green micro-LED efficiency enhancement by hydrogen passivation of the p-GaN sidewall. Applied Physics Express, 2022, 15, 084003.	1.1	16
11	Analysis of phonon transport through heterointerfaces of InGaN/GaN via Raman imaging using double-laser system: The effect of crystal defects at heterointerface. Materials Science in Semiconductor Processing, 2022, 150, 106905.	1.9	0
12	606-nm InGaN Amber Micro-Light-Emitting Diodes With an On-Wafer External Quantum Efficiency of 0.56%. IEEE Electron Device Letters, 2021, 42, 1029-1032.	2.2	33
13	Analysis of LO phonon properties in III-nitrides: interaction with carriers and microscopic analysis. , 2021, , .		0
14	Investigation of InGaN-based red/green micro-light-emitting diodes. Optics Letters, 2021, 46, 1912.	1.7	41
15	Atomistic origin of compositional pulling effect in wurtzite (B, Al, In)xGa1â^'xN: A first-principles study. Journal of Applied Physics, 2021, 130, 035704.	1.1	7
16	Ultra-small InGaN green micro-light-emitting diodes fabricated by selective passivation of p-GaN. Optics Letters, 2021, 46, 5092.	1.7	9
17	630-nm red InGaN micro-light-emitting diodes (<20  î¼m × 20  î¼m) exceedir full-color micro-displays. Photonics Research, 2021, 9, 1796.	ıg 1 â€ 3.4	‰m₩/mm<
18	Improved performance of InGaN-based red light-emitting diodes by micro-hole arrays. Optics Express, 2021, 29, 29780.	1.7	11

#	Article	IF	CITATIONS
19	Photoluminescence of InGaN-based red multiple quantum wells. Optics Express, 2021, 29, 30237.	1.7	11
20	Investigation of a Separated Short-Wavelength Peak in InGaN Red Light-Emitting Diodes. Crystals, 2021, 11, 1123.	1.0	7
21	Ultrasmall and ultradense InGaN-based RGB monochromatic micro-light-emitting diode arrays by pixilation of conductive p-GaN. Photonics Research, 2021, 9, 2429.	3.4	14
22	Photoelectrochemical and crystalline properties of a GaN photoelectrode loaded with α-Fe2O3 as cocatalyst. Scientific Reports, 2020, 10, 12586.	1.6	5
23	High-color-rendering-index phosphor-free InGaN-based white light-emitting diodes by carrier injection enhancement via V-pits. Applied Physics Letters, 2020, 117, .	1.5	12
24	Boron influence on bandgap and photoluminescence in BGaN grown on AlN. Journal of Applied Physics, 2020, 127, .	1.1	9
25	Demonstration of low forward voltage InGaN-based red LEDs. Applied Physics Express, 2020, 13, 031001.	1.1	57
26	Effects of size on the electrical and optical properties of InGaN-based red light-emitting diodes. Applied Physics Letters, 2020, 116, .	1.5	38
27	633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress. Applied Physics Letters, 2020, 116, .	1.5	91
28	Energy transport analysis in a Ga0.84In0.16N/GaN heterostructure using microscopic Raman images employing simultaneous coaxial irradiation of two lasers. Applied Physics Letters, 2020, 116, .	1.5	6
29	Optimal ITO transparent conductive layers for InGaN-based amber/red light-emitting diodes. Optics Express, 2020, 28, 12311.	1.7	30
30	Enhanced performance of N-polar AlGaN-based deep-ultraviolet light-emitting diodes. Optics Express, 2020, 28, 30423.	1.7	27
31	Local Heat Energy Transport Analyses in Gallium-Indium-Nitride/Gallium Nitride Heterostructure by Microscopic Raman Imaging Exploiting Simultaneous Irradiation of Two Laser Beams. , 2020, , .		0
32	A Standâ€Alone Module for Solarâ€Driven H 2 Production Coupled with Redoxâ€Mediated Sulfide Remediation. Energy Technology, 2019, 7, 1900575.	1.8	5
33	Photoelectrochemical H2 generation from water using a CoO x /GaN photoelectrode. Japanese Journal of Applied Physics, 2019, 58, SCCC23.	0.8	3
34	Investigation of the p-GaN layer thickness of InGaN-based photoelectrodes for photoelectrochemical hydrogen generation. Japanese Journal of Applied Physics, 2019, 58, SCCC32.	0.8	1
35	Photoelectrochemical hydrogen generation using graded In-content InGaN photoelectrode structures. Nano Energy, 2019, 59, 569-573.	8.2	18
36	Influence of polymerization among Al- and Ga-containing molecules on growth rate and Al content in AlGaN. Journal of Crystal Growth, 2019, 516, 17-20.	0.7	6

#	Article	IF	CITATIONS
37	Metalorganic vapor-phase epitaxial growth simulation to realize high-quality and high-In-content InGaN alloys. Journal of Crystal Growth, 2019, 512, 69-73.	0.7	24
38	Local phonon analysis in InGaN film by mapping of Raman peak energy. , 2019, , .		0
39	Efficiency enhancement of InGaN amber MQWs using nanopillar structures. Nanophotonics, 2018, 7, 317-322.	2.9	10
40	Analysis of Products from Photoelectrochemical Reduction of ¹³ CO ₂ by GaN-Si Based Tandem Photoelectrode. Journal of Physical Chemistry C, 2016, 120, 13970-13975.	1.5	28
41	Investigation of amber light-emitting diodes based on InGaN/AlN/AlGaN quantum wells. Japanese Journal of Applied Physics, 2016, 55, 05FJ06.	0.8	8
42	Demonstration of InGaN-based orange LEDs with hybrid multiple-quantum-wells structure. Applied Physics Express, 2016, 9, 111003.	1.1	52
43	Enhanced light output power of InGaN-based amber LEDs by strain-compensating AlN/AlGaN barriers. Journal of Crystal Growth, 2016, 448, 105-108.	0.7	46
44	Wireless InGaN–Si/Pt device for photo-electrochemical water splitting. Japanese Journal of Applied Physics, 2016, 55, 088004.	0.8	14
45	(Invited) Nitride Photocatalyst to Produce Clean Hydrogen from Water without Extra Bias. ECS Transactions, 2015, 66, 135-138.	0.3	1
46	Photoelectrochemical CO ₂ Conversion to Hydrocarbons Using an AlGaN/GaN-Si Tandem Photoelectrode. Advances in Condensed Matter Physics, 2015, 2015, 1-4.	0.4	5
47	The effect of plane orientation on indium incorporation into InGaN/GaN quantum wells fabricated by MOVPE. Journal of Crystal Growth, 2015, 416, 164-168.	0.7	23
48	Effects of intentional oxygen and carbon doping in MOVPEâ€grown GaN layers on photoelectric properties. Physica Status Solidi (B): Basic Research, 2015, 252, 1116-1120.	0.7	5
49	InGaN photocatalysts on conductive Ga ₂ O ₃ substrates. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1029-1032.	0.8	3
50	Tandem photo-electrode of InGaN with two Si p-n junctions for CO2 conversion to HCOOH with the efficiency greater than biological photosynthesis. Applied Physics Letters, 2015, 106, .	1.5	38
51	Effect of inserted Si p-n junction on GaN-based photo-electrochemical CO2 conversion system. AIP Advances, 2014, 4, .	0.6	13
52	Highly Stable GaN Photocatalyst for Producing H ₂ Gas from Water. Japanese Journal of Applied Physics, 2013, 52, 08JH04.	0.8	36
53	Investigation of Growth Mechanism for InGaN by Metal–Organic Vapor Phase Epitaxy Using Computational Fluid Simulation. Japanese Journal of Applied Physics, 2013, 52, 08JB13.	0.8	0
54	Selectivity Control of CO2Reduction in an Inorganic Artificial Photosynthesis System. Applied Physics Express, 2013, 6, 097102.	1.1	9

#	Article	IF	CITATIONS
55	Enhanced Capability of Photoelectrochemical CO ₂ Conversion System Using an AlGaN/GaN Photoelectrode. Japanese Journal of Applied Physics, 2013, 52, 08JF07.	0.8	27
56	Enhanced CO ₂ reduction capability in an AlGaN/GaN photoelectrode. Applied Physics Letters, 2012, 100, 243904.	1.5	41
57	CO ₂ Conversion with Light and Water by GaN Photoelectrode. Japanese Journal of Applied Physics, 2012, 51, 02BP07.	0.8	20
58	High Stability and Efficiency of GaN Photocatalyst for Hydrogen Generation from Water. Japanese Journal of Applied Physics, 2012, 51, 112601.	0.8	26
59	Hydrogen Generation for 500 hours by Photoelectrolysis of Water using GaN. Materials Research Society Symposia Proceedings, 2012, 1446, 90.	0.1	4
60	Highly efficient photochemical HCOOH production from CO2 and water using an inorganic system. AIP Advances, 2012, 2, .	0.6	20
61	740-nm emission from InGaN-based LEDs on c-plane sapphire substrates by MOVPE. Journal of Crystal Growth, 2012, 343, 13-16.	0.7	71
62	CO ₂ Conversion with Light and Water by GaN Photoelectrode. Japanese Journal of Applied Physics, 2012, 51, 02BP07.	0.8	20
63	High Stability and Efficiency of GaN Photocatalyst for Hydrogen Generation from Water. Japanese Journal of Applied Physics, 2012, 51, 112601.	0.8	28
64	Hydrogen Generation Using Nitride Photoelectrode. , 2012, , .		0
65	Photo-induced CO\$_{2}\$ Reduction with GaN Electrode in Aqueous System. Applied Physics Express, 2011, 4, 117101.	1.1	52
66	Electrooptic effect of water in electric double layer at interface of GaN electrode. Optical Review, 2010, 17, 352-356.	1.2	13
67	Analysis of pulsed injection of precursors in AlN-MOVPE growth by computational fluid simulation. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2268-2271.	0.8	18
68	Photoelectrochemical Properties of the pâ^'n Junction in and near the Surface Depletion Region of n-Type GaN. Journal of Physical Chemistry C, 2010, 114, 22727-22735.	1.5	32
69	Growth behavior of AllnGaN films. Journal of Crystal Growth, 2009, 311, 474-477.	0.7	15
70	Nitride photocatalyst to generate hydrogen gas from water. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 2349-2351.	0.8	23
71	Characterization and electrochemical properties of CF4 plasma-treated boron-doped diamond surfaces. Diamond and Related Materials, 2008, 17, 48-54.	1.8	27
72	Direct Observation of an Ordered Phase in (11ar20) Plane InGaN Alloy. Japanese Journal of Applied Physics, 2008, 47, 8783-8786.	0.8	3

#	Article	IF	CITATIONS
73	Photoelectrochemical Reactions and Hydrogen Evolution of III-Nitride Semiconductors. AIP Conference Proceedings, 2008, , .	0.3	0
74	Photoelectrochemical H2 Gas Generation Improvement with Thin p-Type GaN Layer on n-Type GaN. ECS Transactions, 2008, 13, 177-183.	0.3	2
75	An orthogonal surface phase in semipolar GaNâ^•r-plane sapphire. Applied Physics Letters, 2008, 92, 171912.	1.5	6
76	Photoelectrochemical Properties of Nonpolar and Semipolar GaN. Japanese Journal of Applied Physics, 2007, 46, 6573-6578.	0.8	27
77	Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN. Journal of Chemical Physics, 2007, 126, 054708.	1.2	74
78	Novel Nano-Heterostructure Materials and Related Devices. , 2007, , 281-327.		0
79	Band-Edge Energies and Photoelectrochemical Properties of n-Type Al[sub x]Ga[sub 1â^'x]N and In[sub y]Ga[sub 1â^'y]N Alloys. Journal of the Electrochemical Society, 2007, 154, B175.	1.3	38
80	Plasma etching treatment for surface modification of boron-doped diamond electrodes. Electrochimica Acta, 2007, 52, 3841-3848.	2.6	50
81	Large misorientation of GaN films grown on r-plane sapphire substrates by metalorganic vapor-phase epitaxy. Journal of Crystal Growth, 2007, 298, 293-296.	0.7	15
82	Influence of polymer formation on metalorganic vapor-phase epitaxial growth of AlN. Journal of Crystal Growth, 2007, 304, 133-140.	0.7	33
83	Fabrication and optical properties of blue LEDs with silica microsphere coating. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 25-28.	0.8	0
84	Cathodoluminescence characterization of [110]-oriented InGaN/GaN thin films grown onr-plane sapphire substrates by metalorganic vapor-phase epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 2544-2547.	0.8	1
85	Investigation of surface morphology of n-type GaN after photoelectrochemical reaction in various solutions for H2 gas generation. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 2650-2653.	0.8	13
86	Bias-Assisted H[sub 2] Gas Generation in HCl and KOH Solutions Using n-Type GaN Photoelectrode. Journal of the Electrochemical Society, 2006, 153, A468.	1.3	46
87	Hydrogen generation from aqueous water using n-GaN by photoassisted electrolysis. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 2270-2273.	0.8	32
88	Morphological evaluation of epitaxial GaN grown onr -plane sapphire by metalorganic vapor-phase epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1807-1810.	0.8	1
89	Local structural characterization of epitaxiala -plane InGaN/GaN thin films by transmission electron microscopy. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1738-1741.	0.8	3
90	Analysis of TMGa/NH3/H2reaction system in GaN-MOVPE growth by computational simulation. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1716-1719.	0.8	3

#	Article	IF	CITATIONS
91	Formation of polymers in TMGa/NH3/H2 system under GaN growth. Journal of Crystal Growth, 2006, 289, 428-432.	0.7	9
92	Improvement of electrical property of Si-doped GaN grown on -plane sapphire by metalorganic vapor-phase epitaxy. Physica B: Condensed Matter, 2006, 376-377, 520-522.	1.3	18
93	In concentration and tilt of the a-plane InGaN/GaN film by TEM analysis. Physica B: Condensed Matter, 2006, 376-377, 527-531.	1.3	4

94 有機金属æ°—ç›,ā,¨āf"ā,¿ā,ā,·āf¼æ³•ã«ãŠã'ã,‹ GaN è–"膜ã®æˆé••ã,·ãfŸãf¥ãf¬ãf¼ã,·ãf§ãf³. Shinku/Jown2al of the Vacuum S

95	Effect of thermal radiation and absorption in GaN-MOVPE growth modeling on temperature distribution and chemical state. Journal of Crystal Growth, 2005, 276, 57-63.	0.7	21
96	Charge transfer of n-type GaN photoelectrolysis in HCl solution for H2 gas generation at a counterelectrode. Materials Research Society Symposia Proceedings, 2005, 885, 1.	0.1	0
97	Morphological Characteristics ofa-Plane GaN Grown onr-Plane Sapphire by Metalorganic Vapor-Phase Epitaxy. Japanese Journal of Applied Physics, 2005, 44, 7931-7933.	0.8	18
98	Characterization of lattice mosaic ofa-plane GaN grown onr-plane sapphire by metalorganic vapor-phase epitaxy. Materials Research Society Symposia Proceedings, 2005, 892, 597.	0.1	0
99	Impurity doping effect on thermal stability of InGaNâ^•GaN multiple quantum-well structures. Journal of Applied Physics, 2005, 97, 043503.	1.1	11
100	Hydrogen Gas Generation by Splitting Aqueous Water Using n-Type GaN Photoelectrode with Anodic Oxidation. Japanese Journal of Applied Physics, 2005, 44, L543-L545.	0.8	135
101	Photoelectrochemical Properties of InGaN for H2Generation from Aqueous Water. Japanese Journal of Applied Physics, 2005, 44, 7433-7435.	0.8	79
102	Photoelectrochemical Properties of p-Type GaN in Comparison with n-Type GaN. Japanese Journal of Applied Physics, 2005, 44, L909-L911.	0.8	78
103	Modeling of Reaction Pathways of GaN Growth by Metalorganic Vapor-Phase Epitaxy Using TMGa/NH3/H2System: A Computational Fluid Dynamics Simulation Study. Japanese Journal of Applied Physics, 2005, 44, 874-879.	0.8	60
104	Computational fluid dynamics on gaseous and surface chemistry of GaN-MOVPE system for various pressures. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 2569-2572.	0.8	13
105	Characterization of InGaN/GaN Fibonacci superlattices grown by two-flow metalorganic vapor phase epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 2120-2123.	0.8	0
106	Energy renormalization and binding energy of the biexciton. Physical Review B, 2003, 67, .	1.1	9
107	Spatiotemporal dynamics of quantum-well excitons. Physical Review B, 2003, 67, .	1.1	43
108	X-ray diffraction study of InGaN/GaN superlattice interfaces. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 1839.	1.6	6

#	Article	IF	CITATIONS
109	Midinfrared pump–probe reflection spectroscopy of the coupled phonon–plasmon mode in GaN. Applied Physics Letters, 2002, 81, 484-486.	1.5	22
110	Instability of Cl-Related Deep Defects in ZnSe. Japanese Journal of Applied Physics, 2002, 41, 514-517.	0.8	0
111	Displaced Substitutional Phosphorus Acceptors in Zinc Selenide. Physica Status Solidi (B): Basic Research, 2002, 229, 257-260.	0.7	4
112	Decomposition and Uniformity of Material Gases in GaN MOVPE. Physica Status Solidi A, 2002, 194, 489-493.	1.7	16
113	GaN-MOVPE growth and its microscopic chemistry of gaseous phase by computational thermodynamic analysis. Journal of Crystal Growth, 2002, 237-239, 931-935.	0.7	27
114	Growth of GaN Layers by One-, Two-, and Three-Flow Metalorganic Vapor Phase Epitaxy. Physica Status Solidi A, 2001, 188, 621-624.	1.7	19
115	Direct evidence for the trigonal symmetry of shallow phosphorus acceptors in ZnSe. Physical Review B, 2001, 64, .	1.1	9
116	Growth of GaN Layers by One-, Two-, and Three-Flow Metalorganic Vapor Phase Epitaxy. Physica Status Solidi A, 2001, 188, 621-624.	1.7	1
117	Localization of Excitons in Pairs of Natural Dots Induced by Stacking Faults in ZnSe Quantum Wells. Physica Status Solidi A, 2000, 178, 189-192.	1.7	1
118	Spin-Dependent Exciton–Exciton Interaction in ZnSe Quantum Wells. Physica Status Solidi A, 2000, 178, 535-538.	1.7	4
119	Stacking-fault-induced pairs of localizing centers in ZnSe quantum wells. Journal of Crystal Growth, 2000, 214-215, 634-638.	0.7	2
120	Internal photoluminescence in ZnSe homoepitaxy and application in blue–green–orange mixed-color light-emitting diodes. Journal of Crystal Growth, 2000, 214-215, 1075-1079.	0.7	18
121	Gigantic Reflectance Anisotropy of the [110] Face of Cubic ZnSe in the Excitonic Part of the Spectrum. Journal of the Physical Society of Japan, 2000, 69, 3458-3461.	0.7	1
122	Growth and characterization of Il–VI semiconductor lasers. Festkörperprobleme, 1999, , 47-60.	0.7	8
123	Device Properties of Homo- and Heteroepitaxial ZnSe-Based Laser Diodes. Japanese Journal of Applied Physics, 1999, 38, 2590-2597.	0.8	21
124	Electron-phonon quantum kinetics in the strong-coupling regime. Physical Review B, 1999, 60, 12079-12090.	1.1	52
125	Radiative recombination centers induced by stacking-fault pairs in ZnSe/ZnMgSSe quantum-well structures. Applied Physics Letters, 1999, 75, 3944-3946.	1.5	22
126	Relation between spin and momentum relaxation in ZnSe/ZnMgSSe quantum wells. Physica B: Condensed Matter, 1999, 272, 338-340.	1.3	8

KAZUHIRO OHKAWA

#	Article	IF	CITATIONS
127	Electron–phonon quantum kinetics in the strong coupling regime. Journal of Luminescence, 1999, 83-84, 155-160.	1.5	Ο
128	Homoepitaxial laser diodes grown on conducting and insulating ZnSe substrates. Journal of Crystal Growth, 1999, 201-202, 933-937.	0.7	6
129	Formation of self-assembling II–VI semiconductor nanostructures during migration enhanced epitaxy. Journal of Crystal Growth, 1998, 184-185, 259-263.	0.7	37
130	Exciton localisation in CdSe islands buried in a quantum well of Zn1â^'xCdxSe. Journal of Crystal Growth, 1998, 184-185, 306-310.	0.7	23
131	Stability issues of quaternary CdZnSSe and ternary CdZnSe quantum wells in blue—green laser diodes. Journal of Crystal Growth, 1998, 184-185, 580-584.	0.7	1
132	Measurements of the absolute external luminescence quantum efficiency in ZnSe/ZnMgSSe multiple quantum wells as a function of temperature. Journal of Applied Physics, 1998, 84, 6871-6876.	1.1	21
133	Migration enhanced epitaxy of CdSe islands on ZnSe and their optical and structural characterization. Microelectronic Engineering, 1998, 43-44, 701-705.	1.1	1
134	Planar homoepitaxial laser diodes grown on aluminium-doped ZnSe substrates. Electronics Letters, 1998, 34, 891.	0.5	8
13	Optical detection of crystallographic domains in zinc-blende crystals. Applied Physics Letters, 1998, 73, 1511-1513.	1.5	3
130	Comparison of Long-Time Delay in Lasing in Homo- and Heteroepitaxially Grown II-VI Laser Diodes. Acta Physica Polonica A, 1998, 94, 355-358.	0.2	3
137	CdSe/ZnSe quantum structures grown by migration enhanced epitaxy: Structural and optical investigations. Applied Physics Letters, 1997, 71, 1510-1512.	1.5	83
138	⁸ Internal photoluminescence and lifetime of light-emitting diodes on conductive ZnSe substrates. Journal of Applied Physics, 1997, 82, 4690-4692.	1.1	10
139	ZnSe-Based Laser Diodes and LEDs Grown on ZnSe and GaAs Substrates. Physica Status Solidi (B): Basic Research, 1997, 202, 683-693.	0.7	15
140	CdSe/ZnSe Quantum Dot Structures: Structural and Optical Investigations. Physica Status Solidi (B): Basic Research, 1997, 202, 835-843.	0.7	53
141	Rapid growth of II-VI laser structures by compound-source molecular beam epitaxy. , 1996, 2693, 2.		0
142	2 Compound source molecular beam epitaxy for II–VI laser structures. Journal of Crystal Growth, 1996, 159, 632-635.	0.7	11
143	Real-Index Guided Blue-Green Laser Diode with Small Beam Astigmatism Fabricated Using ZnO Buried Structure. Japanese Journal of Applied Physics, 1996, 35, L314-L316.	0.8	9
144	4 Compound‧ource MBE for ZnSeâ€Based Lasers. Physica Status Solidi (B): Basic Research, 1995, 187, 291-296.	0.7	4

9

#	Article	IF	CITATIONS
145	Role of biexciton state in excitonic resonant nonlinearity in homoepitaxial ZnSe. Solid State Communications, 1995, 95, 679-683.	0.9	16
146	Compound-Source Molecular Beam Epitaxy for ZnCdSe/ZnSSe/ZnMgSSe Laser Structure. Japanese Journal of Applied Physics, 1994, 33, L1673-L1675.	0.8	9
147	Spinâ€flip Raman scattering from shallow and deep donor centers in nitrogenâ€dopedpâ€type zinc selenide. Applied Physics Letters, 1994, 65, 2063-2065.	1.5	25
148	Free induction decay and quantum beat of excitons in ZnSe. Journal of Crystal Growth, 1994, 138, 805-808.	0.7	8
149	Optical gain in an inhomogeneously broadened exciton system. Journal of Luminescence, 1994, 58, 241-243.	1.5	1
150	Characteristics of ZnCdSe single-quantum-well laser diodes. Physica B: Condensed Matter, 1993, 191, 130-132.	1.3	1
151	ZnSe-based laser diodes and p-type doping of ZnSe. Physica B: Condensed Matter, 1993, 185, 112-117.	1.3	28
152	Photopumped Blue Laser Action in ZnSe-ZnMnSSe Double Heterostructure Grown by Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 1993, 32, L1657-L1659.	0.8	5
153	Cavity Parameters of ZnCdSe/ZnSe Single-Quantum-Well Separate-Confinement-Heterostructure Laser Diodes. Japanese Journal of Applied Physics, 1993, 32, L1750-L1752.	0.8	2
154	ZnSe-Based Diode Lasers with Stripe-Geometry Fabricated by Ion Bombardment. Japanese Journal of Applied Physics, 1993, 32, L1753-L1755.	0.8	0
155	ZnSe-based laser diodes and p-type doping of ZnSe. , 1993, , 112-117.		0
156	Zn1-XCdXSe (X=0.2-0.3) Single-Quantum-Well Laser Diodes without GaAs Buffer Layers. Japanese Journal of Applied Physics, 1992, 31, L1478-L1480.	0.8	22
157	Giant nonlinear phase shift at exciton resonance in ZnSe. Applied Physics Letters, 1992, 60, 192-194.	1.5	26
158	Molecular-beam epitaxial growth of p- and n-type ZnSe homoepitaxial layers. Journal of Crystal Growth, 1992, 117, 375-384.	0.7	83
159	Giant excitonic optical nonlinearity in ZnSe grown by molecular beam epitaxy. Journal of Crystal Growth, 1992, 117, 802-805.	0.7	2
160	Photoluminescence properties of nitrogen-doped ZnSe layers grown by molecular beam epitaxy with ion- and radical-beam doping techniques. Journal of Luminescence, 1992, 52, 9-15.	1.5	0
161	Homoepitaxial Growth of p-Type ZnSe Layers on Dry-Etched Substrates. Materials Research Society Symposia Proceedings, 1991, 228, 307.	0.1	0
162	Electroluminescence from p-n Junction Leds Consisting of N-Doped and Cl-Doped ZnSe Layers. Materials Research Society Symposia Proceedings, 1991, 228, 339.	0.1	0

#	Article	IF	CITATIONS
163	Doping of nitrogen acceptors into ZnSe using a radical beam during MBE growth. Journal of Crystal Growth, 1991, 111, 797-801.	0.7	162
164	Blue Electroluminescence from ZnSep-nJunction Light-Emitting Diodes. Japanese Journal of Applied Physics, 1991, 30, 3873-3875.	0.8	35
165	Characteristics of p-type ZnSe Layers Grown by Molecular Beam Epitaxy with Radical Doping. Japanese Journal of Applied Physics, 1991, 30, L152-L155.	0.8	199
166	pâ€ŧype ZnSe homoepitaxial layers grown by molecular beam epitaxy with nitrogen radical doping. Journal of Applied Physics, 1991, 70, 439-442.	1.1	38
167	Molecularâ€beam epitaxial growth and characterization of ZnSâ€ZnxCd1â^'xS strainedâ€layer superlattices. Journal of Applied Physics, 1991, 69, 3226-3230.	1.1	33
168	Treatment of ZnSe substrates for homoepitaxy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1991, 9, 1934.	1.6	14
169	Characterization of short-period ZnTe-ZnS superlattices grown by MBE. Journal of Crystal Growth, 1990, 99, 464-467.	0.7	12
170	ZnTeî—,ZnS strained-layer superlattices grown by ALE and MBE: Effects of strain on ZnTe incorporation. Journal of Crystal Growth, 1990, 101, 118-121.	0.7	10
171	Multiple states in surface lattice constant behavior during the molecular beam epitaxial growth of ZnTeâ€ZnS strained layer superlattices. Journal of Applied Physics, 1990, 68, 4581-4585.	1.1	5
172	Homoepitaxial growth of ZnSe on dryâ€etched substrates. Applied Physics Letters, 1989, 54, 2553-2555.	1.5	26
173	Electron and xâ€ray diffraction study of ZnTeâ€ZnS strainedâ€layer superlattices grown by molecular beam epitaxy. Applied Physics Letters, 1989, 54, 117-119.	1.5	8
174	MBE-grown ZnTe-ZnS strained-layer superlattices. Journal of Crystal Growth, 1989, 95, 547-551.	0.7	15
175	Molecular beam epitaxial growth of nitrogen-doped ZnSe with ion doping technique. Journal of Crystal Growth, 1988, 86, 329-334.	0.7	45
176	Effect of biaxial strain on exciton luminescence of heteroepitaxial ZnSe layers. Physical Review B, 1988, 38, 12465-12469.	1.1	82
177	Characteristics of Clâ€doped ZnSe layers grown by molecularâ€beam epitaxy. Journal of Applied Physics, 1987, 62, 3216-3221.	1.1	183
178	Photoluminescence properties of nitrogenâ€doped ZnSe layers grown by molecular beam epitaxy with lowâ€energy ion doping. Applied Physics Letters, 1986, 49, 1348-1350.	1.5	60