Nelson Gomes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6572023/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	HPLC-DAD-ESI/MSn and UHPLC-ESI/QTOF/MSn characterization of polyphenols in the leaves of Neocarya macrophylla (Sabine) Prance ex F. White and cytotoxicity to gastric carcinoma cells. Food Research International, 2022, 155, 111082.	2.9	5
2	The burden of injury in Central, Eastern, and Western European sub-region: a systematic analysis from the Global Burden of Disease 2019 Study. Archives of Public Health, 2022, 80, 142.	1.0	9
3	Valorisation of the industrial waste of Chukrasia tabularis A.Juss.: Characterization of the leaves phenolic constituents and antidiabetic-like effects. Industrial Crops and Products, 2022, 185, 115100.	2.5	1
4	Valorisation of kitul, an overlooked food plant: Phenolic profiling of fruits and inflorescences and assessment of their effects on diabetes-related targets. Food Chemistry, 2021, 342, 128323.	4.2	10
5	Pharmacokinetics and Pharmacodynamics of Salvinorin A and Salvia divinorum: Clinical and Forensic Aspects. Pharmaceuticals, 2021, 14, 116.	1.7	13
6	Activation of caspase-3 in gastric adenocarcinoma AGS cells by Xylopia aethiopica (Dunal) A. Rich. fruit and characterization of its phenolic fingerprint by HPLC-DAD-ESI(Ion Trap)-MSn and UPLC-ESI-QTOF-MS2. Food Research International, 2021, 141, 110121.	2.9	13
7	Cassia sieberiana DC. leaves modulate LPS-induced inflammatory response in THP-1Âcells and inhibit eicosanoid-metabolizing enzymes. Journal of Ethnopharmacology, 2021, 269, 113746.	2.0	7
8	Infrared Irradiation Drying Impact on Bee Pollen: Case Study on the Phenolic Composition of Eucalyptus globulus Labill and Salix atrocinerea Brot. Pollens. Processes, 2021, 9, 890.	1.3	5
9	Biosynthetic versatility of marine-derived fungi on the delivery of novel antibacterial agents against priority pathogens. Biomedicine and Pharmacotherapy, 2021, 140, 111756.	2.5	11
10	A shotgun proteomic approach reveals protein expression in morphological changes and programmed cell death in Mimosa pigra seedlings after treatment with coumarins. South African Journal of Botany, 2021, 142, 370-379.	1.2	5
11	Anti-inflammatory properties of Xylopia aethiopica leaves: Interference with pro-inflammatory cytokines in THP-1-derived macrophages and flavonoid profiling. Journal of Ethnopharmacology, 2020, 248, 112312.	2.0	19
12	Gustavia gracillima Miers. flowers effects on enzymatic targets underlying metabolic disorders and characterization of its polyphenolic content by HPLC-DAD-ESI/MS. Food Research International, 2020, 137, 109694.	2.9	2
13	Medicinal plants utilized in Thai Traditional Medicine for diabetes treatment: Ethnobotanical surveys, scientific evidence and phytochemicals. Journal of Ethnopharmacology, 2020, 263, 113177.	2.0	30
14	Mapping geographical inequalities in oral rehydration therapy coverage in low-income and middle-income countries, 2000–17. The Lancet Global Health, 2020, 8, e1038-e1060.	2.9	23
15	Toxicokinetics and Toxicodynamics of Ayahuasca Alkaloids N,N-Dimethyltryptamine (DMT), Harmine, Harmaline and Tetrahydroharmine: Clinical and Forensic Impact. Pharmaceuticals, 2020, 13, 334.	1.7	45
16	Mapping geographical inequalities in childhood diarrhoeal morbidity and mortality in low-income and middle-income countries, 2000–17: analysis for the Global Burden of Disease Study 2017. Lancet, The, 2020, 395, 1779-1801.	6.3	72
17	Inhibition of Proinflammatory Enzymes and Attenuation of IL-6 in LPS-Challenged RAW 264.7 Macrophages Substantiates the Ethnomedicinal Use of the Herbal Drug Homalium bhamoense Cubitt & W.W.Sm. International Journal of Molecular Sciences, 2020, 21, 2421.	1.8	5
18	Flavonoid Composition of Salacia senegalensis (Lam.) DC. Leaves, Evaluation of Antidermatophytic Effects, and Potential Amelioration of the Associated Inflammatory Response. Molecules, 2019, 24, 2530.	1.7	13

NELSON GOMES

#	Article	IF	CITATIONS
19	Mapping 123 million neonatal, infant and child deaths between 2000 and 2017. Nature, 2019, 574, 353-358.	13.7	161
20	Phenolic Profiling and Biological Potential of Ficus curtipes Corner Leaves and Stem Bark: 5-Lipoxygenase Inhibition and Interference with NO Levels in LPS-Stimulated RAW 264.7 Macrophages. Biomolecules, 2019, 9, 400.	1.8	23
21	Double the Chemistry, Double the Fun: Structural Diversity and Biological Activity of Marine-Derived Diketopiperazine Dimers. Marine Drugs, 2019, 17, 551.	2.2	28
22	Marine-Derived Anticancer Agents: Clinical Benefits, Innovative Mechanisms, and New Targets. Marine Drugs, 2019, 17, 329.	2.2	64
23	Polyphenolic characterisation and bioactivity of an <i>Oxalis pes</i> - <i>caprae</i> L. leaf extract. Natural Product Research, 2018, 32, 732-738.	1.0	11
24	Hybrid MS/NMR methods on the prioritization of natural products: Applications in drug discovery. Journal of Pharmaceutical and Biomedical Analysis, 2018, 147, 234-249.	1.4	26
25	Leaves and stem bark from Allophylus africanus P. Beauv.: An approach to anti-inflammatory properties and characterization of their flavonoid profile. Food and Chemical Toxicology, 2018, 118, 430-438.	1.8	27
26	Profiling of Heterobranchia Sea Slugs from Portuguese Coastal Waters as Producers of Anti-Cancer and Anti-Inflammatory Agents. Molecules, 2018, 23, 1027.	1.7	10
27	Anti-inflammatory properties of the stem bark from the herbal drug Vitex peduncularis Wall. ex Schauer and characterization of its polyphenolic profile. Food and Chemical Toxicology, 2017, 106, 8-16.	1.8	16
28	UHPLC-MS/MS profiling of Aplysia depilans and assessment of its potential therapeutic use: Interference on iNOS expression in LPS-stimulated RAW 264.7 macrophages and caspase-mediated pro-apoptotic effect on SH-SY5Y cells. Journal of Functional Foods, 2017, 37, 164-175.	1.6	16
29	Marine Invertebrate Metabolites with Anticancer Activities: Solutions to the "Supply Problem― Marine Drugs, 2016, 14, 98.	2.2	72
30	<i>Aspergillus similanensis</i> sp. nov. from a marine sponge in Thailand. Mycotaxon, 2016, 131, 7-15.	0.1	8
31	Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents?. Marine Drugs, 2015, 13, 3950-3991.	2.2	104
32	Zea mays L. Pollen: An Approach to Its Quality Control. Journal of Agricultural Science and Technology B, 2015, 5, .	0.1	1
33	Meroterpenoids from Marine Microorganisms: Potential Scaffolds for New Chemotherapy Leads. , 2015, , 323-366.		1
34	Antibacterial and Antibiofilm Activities of Tryptoquivalines and Meroditerpenes Isolated from the Marine-Derived Fungi Neosartorya paulistensis, N. laciniosa, N. tsunodae, and the Soil Fungi N. fischeri and N. siamensis. Marine Drugs, 2014, 12, 822-839.	2.2	85
35	Bioactive meroditerpenes and indole alkaloids from the soil fungus Neosartorya fischeri (KUFC 6344), and the marine-derived fungi Neosartorya laciniosa (KUFC 7896) and Neosartorya tsunodae (KUFC 9213). Tetrahedron, 2013, 69, 8583-8591.	1.0	66
36	Eurocristatine, a new diketopiperazine dimer from the marine sponge-associated fungus Eurotium cristatum. Phytochemistry Letters, 2012, 5, 717-720.	0.6	55

#	Article	IF	CITATIONS
37	Plants with neurobiological activity as potential targets for drug discovery. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2009, 33, 1372-1389.	2.5	70