Federico Bordi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/657162/publications.pdf

Version: 2024-02-01

141 papers

3,419 citations

32 h-index 214800 47 g-index

141 all docs

141 docs citations

times ranked

141

4106 citing authors

#	Article	IF	CITATIONS
1	Responsivity of Fractal Nanoparticle Assemblies to Multiple Stimuli: Structural Insights on the Modulation of the Optical Properties. Nanomaterials, 2022, 12, 1529.	4.1	4
2	Synthesis and Characterization of Mitochondria-Targeted Triphenylphosphonium Bolaamphiphiles. Methods in Molecular Biology, 2021, 2275, 27-47.	0.9	2
3	The Double-Faced Electrostatic Behavior of PNIPAm Microgels. Polymers, 2021, 13, 1153.	4.5	18
4	Rifampicin–Liposomes for Mycobacterium abscessus Infection Treatment: Intracellular Uptake and Antibacterial Activity Evaluation. Pharmaceutics, 2021, 13, 1070.	4.5	13
5	Influence of drug/lipid interaction on the entrapment efficiency of isoniazid in liposomes for antitubercular therapy: a multi-faced investigation. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112054.	5.0	19
6	Extracellular Vesicles Derived From Citrus sinensis Modulate Inflammatory Genes and Tight Junctions in a Human Model of Intestinal Epithelium. Frontiers in Nutrition, 2021, 8, 778998.	3.7	26
7	Biophysical Characterization of Membrane Phase Transition Profiles for the Discrimination of Outer Membrane Vesicles (OMVs) From Escherichia coli Grown at Different Temperatures. Frontiers in Microbiology, 2020, 11, 290.	3.5	16
8	Assembling patchy plasmonic nanoparticles with aggregation-dependent antibacterial activity. Journal of Colloid and Interface Science, 2020, 580, 419-428.	9.4	24
9	Exploring the Potentiality of a SERS-Active pH Nano-Biosensor. Frontiers in Chemistry, 2019, 7, 413.	3.6	51
10	PLGA based particles as "drug reservoir―for antitumor drug delivery: characterization and cytotoxicity studies. Colloids and Surfaces B: Biointerfaces, 2019, 180, 495-502.	5.0	10
11	Balanced Laser Transmission Spectroscopy Based on a Tunable Gain Double Channel LIA for Nanoparticles Detection in Biomedical Applications. , 2019, , .		1
12	Overcharging and reentrant condensation of thermoresponsive ionic microgels. Soft Matter, 2018, 14, 4110-4125.	2.7	18
13	Aggregation behaviour of triphenylphosphonium bolaamphiphiles. Journal of Colloid and Interface Science, 2018, 531, 451-462.	9.4	3
14	Next generation ultrasound platforms for theranostics. Journal of Colloid and Interface Science, 2017, 491, 151-160.	9.4	26
15	Hyaluronan-cholesterol nanohydrogels: Characterisation and effectiveness in carrying alginate lyase. New Biotechnology, 2017, 37, 80-89.	4.4	24
16	Biophysical and biological contributions of polyamine-coated carbon nanotubes and bidimensional buckypapers in the delivery of miRNAs to human cells. International Journal of Nanomedicine, 2017, Volume 13, 1-18.	6.7	24
17	Monosialoganglioside-GM1 triggers binding of the amyloid-protein salmon calcitonin to a Langmuir membrane model mimicking the occurrence of lipid-rafts. Biochemistry and Biophysics Reports, 2016, 8, 365-375.	1.3	9
18	Re-entrant DNA gels. Nature Communications, 2016, 7, 13191.	12.8	69

#	Article	IF	Citations
19	Graphene Meets Microbubbles: A Superior Contrast Agent for Photoacoustic Imaging. ACS Applied Materials & Samp; Interfaces, 2016, 8, 16465-16475.	8.0	47
20	Complex interfaces in "phase-change―contrast agents. Physical Chemistry Chemical Physics, 2016, 18, 8378-8388.	2.8	14
21	Salt-induced reentrant stability of polyion-decorated particles with tunable surface charge density. Colloids and Surfaces B: Biointerfaces, 2016, 137, 109-120.	5.0	19
22	Biosynthesis and Characterization of Cross-Linked Fmoc Peptide-Based Hydrogels for Drug Delivery Applications. Gels, 2015, 1, 179-193.	4.5	22
23	Improved stability and efficacy of chitosan/pDNA complexes for gene delivery. Biotechnology Letters, 2015, 37, 557-565.	2.2	21
24	Identification and Partial Characterization of Two Populations of Prostasomes by a Combination of Dynamic Light Scattering and Proteomic Analysis. Journal of Membrane Biology, 2015, 248, 991-1004.	2.1	17
25	Temperature-Tunable Nanoparticles for Selective Biointerface. Biomacromolecules, 2015, 16, 1753-1760.	5.4	6
26	Equilibrium gels of trivalent DNA-nanostars: Effect of the ionic strength on the dynamics. European Physical Journal E, 2015, 38, 64.	1.6	29
27	Designing unconventional Fmoc-peptide-based biomaterials: structure and related properties. Soft Matter, 2014, 10, 1944.	2.7	37
28	Structural and permeability sensitivity of cells to low intensity ultrasound: Infrared and fluorescence evidence in vitro. Ultrasonics, 2014, 54, 1020-1028.	3.9	14
29	Chitosan–DNA complexes: Effect of molecular parameters on the efficiency of delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 460, 184-190.	4.7	32
30	Chitosan–DNA complexes: Charge inversion and DNA condensation. Colloids and Surfaces B: Biointerfaces, 2014, 114, 1-10.	5.0	47
31	On-chip detection of multiple serum antibodies against epitopes of celiac disease by an array of amorphous silicon sensors. RSC Advances, 2014, 4, 2073-2080.	3.6	38
32	Potential genotoxic effects of low-intensity ultrasound on fibroblasts, evaluated with the cytokinesis-block micronucleus assay. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2014, 772, 20-24.	1.7	9
33	Polymeric hollow micro and nanospheres for biotechnological applications: A focused review. Materials Letters, 2013, 109, 134-139.	2.6	16
34	Mid-Infrared Surface Plasmon Polariton Sensors Resonant with the Vibrational Modes of Phospholipid Layers. Journal of Physical Chemistry C, 2013, 117, 19119-19126.	3.1	22
35	Role of macrophage activation in the lipid metabolism of postprandial triacylglycerol-rich lipoproteins. Experimental Biology and Medicine, 2013, 238, 98-110.	2.4	7
36	Glucose level determination with a multi-enzymatic cascade reaction in a functionalized glass chip. Analyst, The, 2013, 138, 5019.	3.5	28

#	Article	IF	Citations
37	Fusion of gemini based cationic liposomes with cell membrane models: implications for their biological activity. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 382-390.	2.6	28
38	Differential Fano interference spectroscopy of subwavelength hole arrays for mid-infrared mass sensors. , 2013, , .		1
39	Ultrasound well below the intensity threshold of cavitation can promote efficient uptake of small drug model molecules in fibroblast cells. Drug Delivery, 2013, 20, 285-295.	5.7	22
40	A New Nanostructured Stationary Phase for Ultra-Thin Layer Chromatography: A Brush-Gel Polymer Film. Nanoscience and Nanotechnology Letters, 2013, 5, 1155-1163.	0.4	11
41	Double Charge Inversion in Polyethylenimine-Decorated Liposomes. Langmuir, 2012, 28, 10534-10542.	3 . 5	24
42	Incorporation of the bacterial reaction centre into dendrimersomes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 413, 38-43.	4.7	12
43	How stereochemistry affects the physicochemical features of gemini surfactant based cationic liposomes. Soft Matter, 2012, 8, 5904.	2.7	23
44	Aggregation and stability of polyelectrolyte-decorated liposome complexes in water–salt media. Soft Matter, 2012, 8, 9384.	2.7	30
45	New pyrenyl fluorescent amphiphiles: synthesis and aggregation properties. Soft Matter, 2011, 7, 8525.	2.7	8
46	Structure–activity relationships of Candida rugosa lipase immobilized on polylactic acid nanoparticles. Soft Matter, 2011, 7, 2653.	2.7	56
47	Adsorption of Candida rugosa lipase at water-polymer interface: The case of poly(dl)lactide. Surface Science, 2011, 605, 2017-2024.	1.9	9
48	Multicompartment vectors as novel drug delivery systems: selective activation of $T^{\hat{1}\hat{3}\hat{1}}$ lymphocytes after zoledronic acid delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 153-161.	3.3	28
49	Interaction between like-charged polyelectrolyte-colloid complexes in electrolyte solutions: A Monte Carlo simulation study in the Debye–HÃ⅓ckel approximation. Journal of Chemical Physics, 2010, 133, 024901.	3.0	25
50	Synthesis and Physicochemical Characterization of New Twin-Tailed <i>N</i> -Oxide Based Gemini Surfactants. Langmuir, 2010, 26, 6177-6183.	3.5	16
51	Lipase-supported synthesis of peptidic hydrogels. Soft Matter, 2010, 6, 2525.	2.7	62
52	Colloidal particle aggregates induced by particle surface charge heterogeneity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 343, 34-42.	4.7	24
53	Kinetic arrest in polyion-induced inhomogeneously charged colloidal particle aggregation. European Physical Journal E, 2009, 29, 229-237.	1.6	13
54	Counterion condensation of differently flexible polyelectrolytes in aqueous solutions in the dilute and semidilute regime. Physical Review E, 2009, 79, 011804.	2.1	44

#	Article	IF	Citations
55	Polyelectrolyte-induced aggregation of liposomes: a new cluster phase with interesting applications. Journal of Physics Condensed Matter, 2009, 21, 203102.	1.8	38
56	Infrared spectra of phosphatidylethanolamine–cardiolipin binary system. Colloids and Surfaces B: Biointerfaces, 2008, 64, 56-64.	5.0	9
57	Influence of temperature on microdomain organization of mixed cationic–zwitterionic lipidic monolayers at the air–water interface. Colloids and Surfaces B: Biointerfaces, 2008, 61, 304-310.	5.0	27
58	Phenomenological surface characterization of cationic-lipid monolayers in the presence of oppositely charged polyions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 319, 51-61.	4.7	9
59	A novel method to obtain chitosan/DNA nanospheres and a study of their release properties. Nanotechnology, 2008, 19, 055302.	2.6	35
60	Effect of Temperature on the Reentrant Condensation in Polyelectrolyteâ^'Liposome Complexation. Langmuir, 2008, 24, 12181-12188.	3.5	15
61	Hybrid Niosome Complexation in the Presence of Oppositely Charged Polyions. Journal of Physical Chemistry B, 2008, 112, 3720-3727.	2.6	40
62	New Cationic Liposomes as Vehicles of $\langle i \rangle m \langle i \rangle$ -Tetrahydroxyphenylchlorin in Photodynamic Therapy of Infectious Diseases. Molecular Pharmaceutics, 2008, 5, 672-679.	4.6	94
63	Are aortic endograft prostheses fully hemo-compatible? A dielectric spectroscopy investigation of the electrical alterations induced on erythrocyte cell membranes. Biomedical Materials (Bristol), 2007, 2, 26-31.	3.3	1
64	Polyion-induced liposomal vesicle aggregation: A radiowave dielectric relaxation study. Journal of Chemical Physics, 2007, 126, 024902.	3.0	15
65	Properties of Mixed DOTAPâ 'DPPC Bilayer Membranes as Reported by Differential Scanning Calorimetry and Dynamic Light Scattering Measurements. Journal of Physical Chemistry B, 2007, 111, 10032-10039.	2.6	21
66	Strong repulsive interactions in polyelectrolyte-liposome clusters close to the isoelectric point: A sign of an arrested state. Physical Review E, 2007, 76, 061403.	2.1	12
67	Does a cluster phase in polyion-liposome colloidal suspensions exist? An integrated experimental overview. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 306, 102-110.	4.7	6
68	Radiofrequency dielectric loss relaxation in polyion-induced liposome aggregates. Journal of Colloid and Interface Science, 2007, 309, 366-372.	9.4	11
69	Interaction of gadolinium with phospholipids bilayer membranes. Journal of Thermal Analysis and Calorimetry, 2007, 87, 199-203.	3.6	7
70	Examination of the influence of F6H10 fluorinated diblocks on DPPC liposomes. Journal of Thermal Analysis and Calorimetry, 2007, 87, 301-304.	3.6	6
71	Dielectric scaling in polyelectrolyte solutions with different solvent quality in the dilute concentration regime. Physical Chemistry Chemical Physics, 2006, 8, 3653.	2.8	14
72	Charge Renormalization in Planar and Spherical Charged Lipidic Aqueous Interfaces. Journal of Physical Chemistry B, 2006, 110, 4808-4814.	2.6	15

#	Article	IF	CITATIONS
73	Direct Evidence of Multicompartment Aggregates in Polyelectrolyte-Charged Liposome Complexes. Biophysical Journal, 2006, 91, 1513-1520.	0.5	61
74	Conductometric evidence for intact polyion-induced liposome clusters. Journal of Colloid and Interface Science, 2006, 304, 512-517.	9.4	14
75	Role of Cholesterol, DOTAP, and DPPC in Prostasome/Spermatozoa Interaction and Fusion. Journal of Membrane Biology, 2006, 211, 185-190.	2.1	14
76	Effect ofGd3+on the colloidal stability of liposomes. Physical Review E, 2006, 74, 031913.	2.1	16
77	Counterion release in overcharging of polyion-liposome complexes. Physical Review E, 2006, 74, 030402.	2.1	14
78	Polyelectrolyte–liposome complexes: An equilibrium cluster phase close to the isoelectric condition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 270-271, 138-147.	4.7	16
79	Polyions act as an electrostatic glue for mesoscopic particle aggregates. Chemical Physics Letters, 2005, 409, 134-138.	2.6	25
80	Large equilibrium clusters in low-density aqueous suspensions of polyelectrolyte-liposome complexes: A phenomenological model. Physical Review E, 2005, 71, 050401.	2.1	41
81	Solvent quality influence on the dielectric properties of polyelectrolyte solutions: A scaling approach. Physical Review E, 2005, 72, 031806.	2.1	16
82	Conductometric properties of linear polyelectrolytes in poor-solvent condition: The necklace model. Journal of Chemical Physics, 2005, 122, 234906.	3.0	11
83	Equilibrium particle aggregates in attractive colloidal suspensions. Journal of Physics Condensed Matter, 2005, 17, S3423-S3432.	1.8	18
84	Evidence of Domain Formation in Cardiolipinâ^'Glycerophospholipid Mixed Monolayers. A Thermodynamic and AFM Study. Journal of Physical Chemistry B, 2005, 109, 15950-15957.	2.6	58
85	Charge patch attraction and reentrant condensation in DNA–liposome complexes. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1714, 11-24.	2.6	60
86	On the phase diagram of reentrant condensation in polyelectrolyte-liposome complexation. Journal of Chemical Physics, 2004, 121, 4936-4940.	3.0	27
87	Azurin Self-Assembled Monolayers Characterized by Coupling Electrical Impedance Spectroscopy and Spectroscopic Ellipsometry. Journal of Physical Chemistry B, 2004, 108, 20263-20272.	2.6	34
88	Complexation of Anionic Polyelectrolytes with Cationic Liposomes:Â Evidence of Reentrant Condensation and Lipoplex Formation. Langmuir, 2004, 20, 5214-5222.	3.5	63
89	Dielectric spectroscopy and conductivity of polyelectrolyte solutions. Journal of Physics Condensed Matter, 2004, 16, R1423-R1463.	1.8	181
90	Distribution of GD3 in DPPC Monolayers: A Thermodynamic and Atomic Force Microscopy Combined Study. Biophysical Journal, 2004, 86, 321-328.	0.5	32

#	Article	IF	CITATIONS
91	Correlated adsorption of polyelectrolytes in the "charge inversion―of colloidal particles. Europhysics Letters, 2004, 68, 296-302.	2.0	32
92	Polyelectrolyte coupling to charged lipid monolayers and to cationic liposomes., 2004,, 47-50.		1
93	Time evolution of the formation of different size cationic liposome–polyelectrolyte complexes. Bioelectrochemistry, 2003, 59, 99-106.	4.6	30
94	Charged lipid monolayers at the air–solution interface: coupling to polyelectrolytes. Colloids and Surfaces B: Biointerfaces, 2003, 29, 149-157.	5.0	27
95	Electrical conductivity of aqueous polyelectrolyte solutions in the presence of counterion condensation: The scaling approach revisited. Physical Review E, 2002, 66, 021803.	2.1	22
96	Dielectric Relaxations in Aqueous Polyelectrolyte Solutions:Â A Scaling Approach and the Role of the Solvent Quality Parameter. Langmuir, 2002, 18, 6404-6409.	3.5	15
97	Determination of Polyelectrolyte Charge and Interaction with Water Using Dielectric Spectroscopy. Macromolecules, 2002, 35, 7031-7038.	4.8	39
98	Electrical Conductivity of Polyelectrolyte Solutions in the Semidilute and Concentrated Regime:Â The Role of Counterion Condensation. Journal of Physical Chemistry B, 2002, 106, 6887-6893.	2.6	87
99	Two-step mechanism in cationic lipoplex formation as observed by dynamic light scattering, dielectric relaxation and circular dichroism methods. Physical Chemistry Chemical Physics, 2002, 4, 2708-2713.	2.8	19
100	P-glycoprotein inserted in planar lipid bilayers formed by liposomes opened on amorphous carbon and Langmuirâ∈"Blodgett monolayer. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1559, 21-31.	2.6	15
101	Dielectric spectroscopy of erythrocyte cell suspensions. A comparison between Looyenga and Maxwellâ€"Wagnerâ€"Hanai effective medium theory formulations. Journal of Non-Crystalline Solids, 2002, 305, 278-284.	3.1	58
102	Aggregation of Gramicidin A in Phospholipid Langmuir–Blodgett Monolayers. Biophysical Journal, 2002, 82, 3198-3206.	0.5	58
103	Structural alteration of erythrocyte cell membrane in presence of artificial prostheses: A radiowave dielectric spectroscopy study. Journal of Biomedical Materials Research Part B, 2002, 59, 100-109.	3.1	6
104	Salt-induced aggregation in cationic liposome aqueous suspensions resulting in multi-step self-assembling complexes. Colloids and Surfaces B: Biointerfaces, 2002, 26, 341-350.	5.0	27
105	Chemical and physical hydrogels: two casesystems studied by quasi elastic light scattering. Physica A: Statistical Mechanics and Its Applications, 2002, 304, 119-128.	2.6	35
106	Impedance measurements of self-assembled lipid bilayer membranes on the tip of an electrode. Bioelectrochemistry, 2002, 57, 39-46.	4.6	37
107	Hydrodynamic Radii and Lipid Transfer in Prostasome Self-Fusion. Archives of Biochemistry and Biophysics, 2001, 396, 10-15.	3.0	7
108	Structural Alteration of Erythrocyte Membrane during Storage: a Combined Electrical Conductometric and Flow-Cytometric Study. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2001, 56, 857-864.	1.4	7

#	Article	IF	Citations
109	Reduction of the contribution of electrode polarization effects in the radiowave dielectric measurements of highly conductive biological cell suspensions. Bioelectrochemistry, 2001, 54, 53-61.	4.6	132
110	Occurrence of an Intermediate Relaxation Process in Water-in-Oil Microemulsions below Percolation: The Electrical Modulus Formalism. Journal of Colloid and Interface Science, 2001, 237, 224-229.	9.4	15
111	Quasi-elastic light scattering from large anisotropic particles: application to the red blood cells. Bioelectrochemistry, 2000, 52, 213-221.	4.6	11
112	A Dynamic Light Scattering Study of Hydrogels Based on Telechelic Poly(vinyl alcohol). Journal of Physical Chemistry B, 2000, 104, 11019-11026.	2.6	44
113	Scaling Behavior of the High-Frequency Dielectric Properties of Poly-l-lysine Aqueous Solutions. Macromolecules, 2000, 33, 1910-1916.	4.8	13
114	Effect of polymer adsorption on PEO-coated latex particles during salt-induced aggregation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 160, 189-198.	4.7	6
115	lon transport in lipid bilayer membranes through aqueous pores. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 159, 231-237.	4.7	8
116	Interactions of mono- and di-sialogangliosides with phospholipids in mixed monolayers at air-water interface. Colloids and Surfaces B: Biointerfaces, 1999, 13, 135-142.	5.0	17
117	Interactions of anthracyclines with zwitterionic phospholipid monolayers at the air–water interface. Bioelectrochemistry, 1999, 49, 51-56.	1.0	19
118	High-frequency dielectric and conductometric properties of poly-l-lysine aqueous solutions at the crossover between semidilute and entangled regime. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 3123-3130.	2.1	3
119	Side-chain dynamics in poly(\hat{l} ±-glutamate) and poly(\hat{l} 3-glutamate) aqueous solutions: a high-frequency dielectric investigation. Physical Chemistry Chemical Physics, 1999, 1, 1555-1561.	2.8	15
120	Cluster Organization of Glycosphingolipid GD1a in Lipid Bilayer Membranes:Â A Dielectric and Conductometric Study. Langmuir, 1999, 15, 2493-2499.	3.5	7
121	Morphological and Functional Alterations of Human Erythrocytes Induced by SiO2Particles: An Electron Microscopy and Dielectric Spectroscopy Study. Environmental Research, 1999, 80, 197-207.	7.5	36
122	Water droplet charging process in water-in-oil microemulsions: an electrical conductivity study. Colloid and Polymer Science, 1998, 276, 1044-1049.	2.1	18
123	A phenomenological approach to relaxation in disordered systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 140, 269-278.	4.7	3
124	Conductometric properties of human erythrocyte membranes: dependence on haematocrit and alkali metal ions of the suspending medium. European Biophysics Journal, 1997, 26, 215-225.	2.2	38
125	A comparative study of the high-frequency dielectric properties of poly(\hat{l} ±-glutamate) and poly(\hat{l} 3-glutamate) aqueous solutions. , 1996, 40, 485-494.		23
126	Influence of different glycosphingolipids on the conductometric properties of a model phospholipid membrane system. Colloids and Surfaces B: Biointerfaces, 1996, 7, 39-46.	5.0	7

#	Article	IF	Citations
127	Dielectric properties of poly(3-hydroxybutyrate) gels in dimethylformamide. Polymer, 1996, 37, 3501-3507.	3.8	4
128	Electrical conductivity and ion permeation in planar lipid membranes. Bioelectrochemistry, 1996, 41, 197-200.	1.0	5
129	Molecular dynamics in sodium poly (L-glutamate) aqueous solutions analyzed by means of the stretched exponential decay of the williams-watts function. Biopolymers, 1995, 36, 539-545.	2.4	6
130	Ultrastructural and spectroscopic methods in the study of anthracycline-membrane interaction. Pharmacological Research, 1995, 32, 255-272.	7.1	20
131	Influence of anthracyclinic antibiotics on membranes of human erythrocytes: A combined radiowave electrical conductivity and electron microscopy study. Bioelectrochemistry, 1994, 34, 45-51.	1.0	8
132	ESR dose assessment in irradiated chicken legs. Radiation Physics and Chemistry, 1994, 43, 487-491.	2.8	15
133	An alternative procedure for ESR identification of irradiated chicken drumsticks. Applied Radiation and Isotopes, 1993, 44, 443-447.	1.5	14
134	Frequency domain electrical conductivity measurements of the passive electrical properties of human lymphocytes. Biochimica Et Biophysica Acta - Biomembranes, 1993, 1153, 77-88.	2.6	44
135	Alteration of the passive electrical properties of lymphocyte membranes induced by GM1 and GM3 glycolipids. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1111, 197-203.	2.6	15
136	Alteration of the passive electrical properties of adriamycin-treated red cell membrane deduced from dielectric spectroscopy. Bioelectrochemistry, 1991, 26, 177-192.	1.0	12
137	Electrical conductivity of colloidal systems during irreversible aggregation. Physica A: Statistical Mechanics and Its Applications, 1990, 164, 663-672.	2.6	16
138	Determination of cell membrane passive electrical properties using frequency domain dielectric spectroscopy technique. A new approach. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1028, 201-204.	2.6	21
139	Passive electrical properties of biological cell membranes determined from Maxwell-Wagner conductivity dispersion measurements. Bioelectrochemistry, 1989, 22, 135-144.	1.0	7
140	Conductometric study of poly(ethylene oxide)â€"water interactions in electrolyte solutions. Colloids and Surfaces, 1989, 35, 337-342.	0.9	1
141	Dielectric study of low-molecular weight mannan triacetate in chloroform. International Journal of Biological Macromolecules, 1987, 9, 95-97.	7.5	0