Mark D Hoover

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6571503/publications.pdf

Version: 2024-02-01

103 papers 3,201 citations

30 h-index 53 g-index

107 all docs

107 docs citations

107 times ranked

3316 citing authors

#	Article	IF	Citations
1	Inhaled aerosol dosimetry: Research-related needs and recommendations. Journal of Aerosol Science, 2021, 155, 105755.	3.8	6
2	Anatomical considerations for inhaled aerosol deposition modeling: Methods, applications, challenges and opportunities. Journal of Aerosol Science, 2021, 156, 105786.	3.8	2
3	Metadata Stewardship in Nanosafety Research: Community-Driven Organisation of Metadata Schemas to Support FAIR Nanoscience Data. Nanomaterials, 2020, 10, 2033.	4.1	41
4	Integration among databases and data sets to support productive nanotechnology: Challenges and recommendations. NanoImpact, 2018, 9, 85-101.	4.5	56
5	A Nanoinformatics Approach to Safety, Health, Well-Being, and Productivity. , 2018, , 83-117.		2
6	Interpreting Mobile and Handheld Air Sensor Readings in Relation to Air Quality Standards and Health Effect Reference Values: Tackling the Challenges. Atmosphere, 2017, 8, 182.	2.3	35
7	Use of the "Exposome―in the Practice of Epidemiology: A Primer on -Omic Technologies. American Journal of Epidemiology, 2016, 184, 302-314.	3.4	98
8	Bridging the gap between exposure assessment and inhalation toxicology: Some insights from the carbon nanotube experience. Journal of Aerosol Science, 2016, 99, 157-162.	3.8	8
9	How should the completeness and quality of curated nanomaterial data be evaluated?. Nanoscale, 2016, 8, 9919-9943.	5.6	86
10	Inhaled aerosol dosimetry: Some current research needs. Journal of Aerosol Science, 2016, 99, 1-5.	3.8	11
11	Adaptive visual sort and summary of micrographic images of nanoparticles for forensic analysis. , 2016, 2016, .		1
12	SPECIFIC BLOOD ABSORPTION PARAMETERS FOR239PUO2AND238PUO2NANOPARTICLES AND IMPACTS ON BIOASSAY INTERPRETATION. Radiation Protection Dosimetry, 2016, 173, ncw039.	0.8	1
13	Toward the Responsible Development and Commercialization of Sensor Nanotechnologies. ACS Sensors, 2016, 1, 207-216.	7.8	52
14	The Nanomaterial Data Curation Initiative: A collaborative approach to assessing, evaluating, and advancing the state of the field. Beilstein Journal of Nanotechnology, 2015, 6, 1752-1762.	2.8	40
15	Commentary on the contributions and future role of occupational exposure science in a vision and strategy for the discipline of exposure science. Journal of Exposure Science and Environmental Epidemiology, 2015, 25, 381-387.	3.9	14
16	Application of an Informatics-Based Decision-Making Framework and Process to the Assessment of Radiation Safety in Nanotechnology. Health Physics, 2015, 108, 179-194.	0.5	15
17	Turning Numbers into Knowledge: Sensors for Safety, Health, Well-being, and Productivity. The Synergist / American Industrial Hygiene Association, 2015, 26, 22-26.	1.0	2
18	Opportunities and challenges of nanotechnology in the green economy. Environmental Health, 2014, 13, 78.	4.0	112

#	Article	IF	Citations
19	Regulatory T cells modulate granulomatous inflammation in an HLA-DP2 transgenic murine model of beryllium-induced disease. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8553-8558.	7.1	34
20	Exposures and Cross-shift Lung Function Declines in Wildland Firefighters. Journal of Occupational and Environmental Hygiene, 2014, 11, 591-603.	1.0	49
21	Occupational safety and health criteria for responsible development of nanotechnology. Journal of Nanoparticle Research, 2014, 16, 2153.	1.9	106
22	Nanoinformatics workshop report: current resources, community needs and the proposal of a collaborative framework for data sharing and information integration. Computational Science & Discovery, 2013, 6, 014008.	1.5	9
23	Preparation, certification and interlaboratory analysis of workplace air filters spiked with high-fired beryllium oxide. Journal of Environmental Monitoring, 2012, 14, 391-401.	2.1	6
24	Informatics and standards for nanomedicine technology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2011, 3, 511-532.	6.1	36
25	Influence of artificial gastric juice composition on bioaccessibility of cobalt- and tungsten-containing powders. International Journal of Hygiene and Environmental Health, 2010, 213, 107-115.	4.3	24
26	Characterization of Exposures to Airborne Nanoscale Particles During Friction Stir Welding of Aluminum. Annals of Occupational Hygiene, 2010, 54, 486-503.	1.9	27
27	AEROSOL SAMPLING SYSTEM FOR COLLECTION OF CAPSTONE DEPLETED URANIUM PARTICLES IN A HIGH-ENERGY ENVIRONMENT. Health Physics, 2009, 96, 221-237.	0.5	14
28	Dissolution and reactive oxygen species generation of inhaled cemented tungsten carbide particles in artificial human lung fluids. Journal of Physics: Conference Series, 2009, 151, 012045.	0.4	6
29	Validation of Analytical Methods and Instrumentation for Beryllium Measurement: Review and Summary of Available Guides, Procedures, and Protocols. Journal of Occupational and Environmental Hygiene, 2009, 6, 766-774.	1.0	1
30	Certification of Beryllium Mass Fraction in SRM 1877 Beryllium Oxide Powder Using High-Performance Inductively Coupled Plasma Optical Emission Spectrometry with Exact Matching. Analytical Chemistry, 2009, 81, 2208-2217.	6.5	10
31	Size-selective poorly soluble particulate reference materials for evaluation of quantitative analytical methods. Analytical and Bioanalytical Chemistry, 2008, 391, 2071-2077.	3.7	10
32	Occupational Risk Management of Engineered Nanoparticles. Journal of Occupational and Environmental Hygiene, 2008, 5, 239-249.	1.0	202
33	Raw Single-Wall Carbon Nanotubes Induce Oxidative Stress and Activate MAPKs, AP-1, NF-κB, and Akt in Normal and Malignant Human Mesothelial Cells. Environmental Health Perspectives, 2008, 116, 1211-1217.	6.0	354
34	The Nanoparticle Information Library (NIL): A Prototype for Linking and Sharing Emerging Data. Journal of Occupational and Environmental Hygiene, 2007, 4, D131-D134.	1.0	14
35	Identification and Characterization of Potential Sources of Worker Exposure to Carbon Nanofibers During Polymer Composite Laboratory Operations. Journal of Occupational and Environmental Hygiene, 2007, 4, D125-D130.	1.0	114
36	Particle size-dependent radical generation from wildland fire smoke. Toxicology, 2007, 236, 103-113.	4.2	72

#	Article	IF	CITATIONS
37	Differences in estimates of size distribution of beryllium powder materials using phase contrast microscopy, scanning electron microscopy, and liquid suspension counter techniques. Particle and Fibre Toxicology, 2007, 4, 3.	6.2	7
38	Fever and leukocytosis responses in goats to inhaled endotoxin are dose-dependent. Small Ruminant Research, 2007, 70, 140-144.	1.2	2
39	A theoretical framework for evaluating analytical digestion methods for poorly soluble particulate beryllium. Analytical and Bioanalytical Chemistry, 2007, 387, 2411-2417.	3.7	9
40	Exposure Pathway Assessment at a Copper–Beryllium Alloy Facility. Annals of Occupational Hygiene, 2006, 51, 67-80.	1.9	43
41	Differences in dissolution behavior in a phagolysosomal simulant fluid for single-constituent and multi-constituent materials associated with beryllium sensitization and chronic beryllium disease. Toxicology in Vitro, 2006, 20, 82-95.	2.4	32
42	BIOAVAILABILITY OF BERYLLIUM OXIDE PARTICLES: AN IN VITRO STUDY IN THE MURINE J774A.1 MACROPHAGE CELL LINE MODEL. Experimental Lung Research, 2005, 31, 341-360.	1.2	23
43	Characterization of phagolysosomal simulant fluid for study of beryllium aerosol particle dissolution. Toxicology in Vitro, 2005, 19, 123-134.	2.4	91
44	Characterization of physicochemical properties of beryllium aerosols associated with prevalence of chronic beryllium disease. Journal of Environmental Monitoring, 2004, 6, 523.	2.1	54
45	CHARACTERIZATION OF PLUTONIUM AEROSOL COLLECTED DURING AN ACCIDENT. Health Physics, 2004, 87, 596-605.	0.5	26
46	Effects of Aerosolized Dust in Goats on Lung Clearance of Pasteurella and Mannheimia Species. Current Microbiology, 2003, 46, 174-179.	2.2	11
47	Efficacy of a Technique for Exposing the Mouse Lung to Particles Aspirated from the Pharynx. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2003, 66, 1441-1452.	2.3	191
48	Surface Area of Respirable Beryllium Metal, Oxide, and Copper Alloy Aerosols and Implications for Assessment of Exposure Risk of Chronic Beryllium Disease. AIHA Journal: A Journal for the Science of Occupational and Environmental Health and Safety, 2003, 64, 297-305.	0.4	43
49	STANDARDS FOR MEASURING AIRBORNE RADIOACTIVITY. Health Physics, 2003, 85, 236-241.	0.5	1
50	Effects of aerosolized feedyard dust that contains natural endotoxins on adult sheep. American Journal of Veterinary Research, 2002, 63, 28-35.	0.6	21
51	Implanted depleted uranium fragments cause soft tissue sarcomas in the muscles of rats Environmental Health Perspectives, 2002, 110, 51-59.	6.0	107
52	Treatment of feedyard dust containing endotoxin and its effect on weanling goats. Small Ruminant Research, 2002, 46, 123-132.	1.2	8
53	Effects of aerosolized endotoxin in feedyard dust on weanling goats. Small Ruminant Research, 2002, 46, 133-147.	1.2	9
54	Customising the LRRI In vivo Bioassay Facility for Measuring 210Pb as a Biomarker for Exposure to Radon Progeny. Radiation Protection Dosimetry, 2000, 89, 333-337.	0.8	3

#	Article	IF	CITATIONS
55	Aerosols Generated During Beryllium Machining. Journal of Occupational and Environmental Medicine, 2000, 42, 8.	1.7	39
56	Performance Evaluation of the Sampling Head and Annular Kinetic Impactor in the Savannah River Site Alpha Continuous Air Monitor. Aerosol Science and Technology, 1999, 31, 24-38.	3.1	6
57	Modular Glovebox Connector and Associated Good Practices for Control of Radioactive and Chemically Toxic Materials. Health Physics, 1999, 76, 66-72.	0.5	4
58	Dose–Response Relationships between Inhaled Beryllium Metal and Lung Toxicity in C3H Mice. Toxicological Sciences, 1998, 42, 36-48.	3.1	6
59	Carcinogenic Responses of Transgenic Heterozygous p53 Knockout Mice to Inhaled 239PuO2 or Metallic Beryllium. Toxicologic Pathology, 1998, 26, 484-491.	1.8	30
60	Dose-Response Relationships between Inhaled Beryllium Metal and Lung Toxicity in C3H Mice. Toxicological Sciences, 1998, 42, 36-48.	3.1	19
61	Application of In Vitro Dissolution Tests to Different Uranium Compounds and Comparison with In Vivo Data. Radiation Protection Dosimetry, 1998, 79, 33-37.	0.8	30
62	Performance Testing of Continuous Air Monitors for Alpha-Emitting Radionuclides. Radiation Protection Dosimetry, 1998, 79, 499-504.	0.8	9
63	Characterisation of Enriched Uranium Dioxide Particles from a Uranium Handling Facility. Radiation Protection Dosimetry, 1998, 79, 57-62.	0.8	5
64	Chronic Cigarette Smoke Exposure Increases the Pulmonary Retention and Radiation Dose of 239Pu Inhaled as 239PuO2 by F344 Rats. Health Physics, 1998, 75, 597-609.	0.5	23
65	Chronic Granulomatous Pneumonia and Lymphocytic Responses Induced by Inhaled Beryllium Metal in A/J and C3H/HeJ Mice. Toxicologic Pathology, 1997, 25, 2-12.	1.8	29
66	On Evaluating Respiratory Tract Intake of High Specific Activity Alpha-Emitting Particles for Brief Occupational Exposure. Radiation Protection Dosimetry, 1997, 69, 43-50.	0.8	6
67	Animal Models of Beryllium-Induced Lung Disease. Environmental Health Perspectives, 1996, 104, 973.	6.0	9
68	The Comparative Pulmonary Toxicity of Beryllium Metal and Beryllium Oxide in Cynomolgus Monkeys. Immunopharmacology and Immunotoxicology, 1994, 16, 627-644.	2.4	19
69	Responses of Rat Lungs to Low Lung Burdens of Inhaled Beryllium Metal. Inhalation Toxicology, 1994, 6, 205-224.	1.6	15
70	Disposition of Polycyclic Aromatic Hydrocarbons in the Respiratory Tract of the Beagle Dog. Toxicology and Applied Pharmacology, 1993, 121, 313-318.	2.8	31
71	Disposition of Polycyclic Aromatic Hydrocarbons in the Respiratory Tract of the Beagle Dog. Toxicology and Applied Pharmacology, 1993, 121, 319-327.	2.8	15
72	Aerodynamic behavior of fiber- and disc-like particles in a Millikan cell apparatus. Journal of Aerosol Science, 1993, 24, 181-195.	3.8	12

#	Article	IF	Citations
73	Sequential Analysis of the Pathogenesis of Plutonium-Induced Pulmonary Neoplasms in the Rat: Morphology, Morphometry, and Cytokinetics. Radiation Research, 1993, 134, 29.	1.5	16
74	A Microspray Nozzle for Local Administration of Liquids or Suspensions to Lung Airways via Bronchoscopy. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 1993, 6, 67-72.	1.2	11
75	Species differences in urinary butadiene metabolites; identification of l,2-dihydroxy-4-(N-acetylcysteinyl)butane, a novel metabolite of butadiene. Carcinogenesis, 1992, 13, 1633-1638.	2.8	71
76	Beryllium-induced lung disease in the dog following two exposures to BeO. Environmental Research, 1992, 59, 400-415.	7.5	9
77	In vitro activity of silicon carbide whiskers in comparison to other industrial fibers using four cell culture systems. American Journal of Industrial Medicine, 1992, 21, 807-823.	2.1	22
78	Sodium metatungstate as a medium for measuring particle density using isopycnic density gradient ultracentrifugation. Journal of Aerosol Science, 1991, 22, 215-221.	3.8	11
79	Potential health risks from postulated accidents involving the Pu-238 RTG on the Ulysses solar exploration mission. AIP Conference Proceedings, 1991, , .	0.4	3
80	Release of Aerosols during Sawing and Milling of Beryllium Metal and Beryllium Alloys. Journal of Occupational and Environmental Hygiene, 1990, 5, 787-791.	0.4	15
81	Clearance, Translocation, and Excretion of Beryllium following Acute Inhalation of Beryllium Oxide by Beagle Dogs. Toxicological Sciences, 1990, 15, 231-241.	3.1	2
82	The Acute Toxicity of Inhaled Beryllium Metal in Rats. Toxicological Sciences, 1990, 15, 767-778.	3.1	0
83	Developments in Modeling Alveolar Retention of Inhaled Insoluble Particles in Rats. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 1990, 3, S-129-S-154.	1.2	12
84	Clearance, translocation, and excretion of beryllium following acute inhalation of beryllium oxide by beagle dogs*1. Fundamental and Applied Toxicology, 1990, 15, 231-241.	1.8	25
85	The acute toxicity of inhaled beryllium metal in rats*1. Fundamental and Applied Toxicology, 1990, 15, 767-778.	1.8	39
86	A method for producing non-spherical monodisperse particles using integrated circuit fabrication techniques. Journal of Aerosol Science, 1990, 21, 569-575.	3.8	25
87	Determination of the Oxide Layer Thickness on Beryllium Metal Particles. AIHA Journal, 1989, 50, 550-553.	0.4	44
88	Compartmental Modeling of the Long-Term Retention of Insoluble Particles Deposited in the Alveolar Region of the Lung. Toxicological Sciences, 1989, 13, 823-842.	3.1	1
89	Compartmental modeling of the long-term retention of insoluble particles deposited in the alveolar region of the lung. Fundamental and Applied Toxicology, 1989, 13, 823-842.	1.8	49
90	Respirable particle density measurements using isopycnic density gradient ultracentrifugation. Journal of Aerosol Science, 1989, 20, 29-36.	3.8	8

#	Article	IF	CITATIONS
91	Generation and Characterization of Respirable Beryllium Oxide Aerosols for Toxicity Studies. Aerosol Science and Technology, 1988, 9, 83-92.	3.1	13
92	In vitro dissolution characteristics of beryllium oxide and beryllium metal aerosols. Journal of Aerosol Science, 1988, 19, 333-342.	3.8	43
93	The effect of beryllium compound solubility on in vitro canine alveolar macrophage cytotoxicity. Toxicology Letters, 1988, 41, 97-105.	0.8	24
94	Collection and Characterization of Aerosols from Metal Cutting Techniques Typically Used in Decommissioning Nuclear Facilities. AIHA Journal, 1987, 48, 922-932.	0.4	18
95	Laser Generation of Particles to Simulate Aerosols from Fusion Systems. Fusion Science and Technology, 1986, 10, 1228-1233.	0.6	2
96	Generation of Li Combustion Aerosols for Animal Inhalation Studies. Health Physics, 1986, 51, 117-126.	0.5	4
97	Studies of Beryllium Dispersion and Toxicology in Fusion Systems. Fusion Science and Technology, 1985, 8, 1184-1188.	0.6	10
98	Characterization of potential aerosols from fusion energy systems. Journal of Nuclear Materials, 1984, 122, 827-832.	2.7	1
99	Health risk implications of using beryllium in fusion reactors. Journal of Nuclear Materials, 1984, 122, 821-826.	2.7	16
100	Experiment on Laminar Flow in a Rotating, Curved Duct of Rectangular Cross Section. Journal of Fluids Engineering, Transactions of the ASME, 1984, 106, 38-44.	1.5	5
101	Aerosol Concentrator Design, Construction, Calibration, and Use. Aerosol Science and Technology, 1983, 2, 437-442.	3.1	27
102	Optimizing Resolution and Sampling Rate in Spinning Duct Aerosol Centrifuges. AIHA Journal, 1983, 44, 131-134.	0.4	3
103	Radiation risks from plutonium recycle. Environmental Science & Environmental Science & Radiation risks from plutonium recycle. Environmental Science & Environmental Science	10.0	3