
David C Leitch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6571273/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-Throughput Experimentation in Organometallic Chemistry and Catalysis. , 2022, , 502-555.		2
2	A reactivity model for oxidative addition to palladium enables quantitative predictions for catalytic cross-coupling reactions. Chemical Science, 2022, 13, 3477-3488.	7.4	16
3	Beyond Bioisosteres: Divergent Synthesis of Azabicyclohexanes and Cyclobutenyl Amines from Bicyclobutanes**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	45
4	Inhibition of Amine–Water Proton Exchange Stabilizes Perovskite Ink for Scalable Solar Cell Fabrication. Chemistry of Materials, 2022, 34, 4394-4402.	6.7	5
5	Palladium-Catalyzed Direct C–H Alkenylation with Enol Pivalates Proceeds via Reversible C–O Oxidative Addition to Pd(0). ACS Catalysis, 2022, 12, 6997-7003.	11.2	8
6	C–O Bond Activation as a Strategy in Palladium-Catalyzed Cross-Coupling. Synlett, 2021, 32, 641-646.	1.8	6
7	The influence of additives on orthogonal reaction pathways in the Mizoroki–Heck arylation of vinyl ethers. Reaction Chemistry and Engineering, 2021, 6, 1212-1219.	3.7	4
8	High length-to-width aspect ratio lead bromide microwires <i>via</i> perovskite-induced local concentration gradient for X-ray detection. CrystEngComm, 2021, 23, 2215-2221.	2.6	3
9	^{DMP} DAB–Pd–MAH: A Versatile Pd(0) Source for Precatalyst Formation, Reaction Screening, and Preparative-Scale Synthesis. ACS Catalysis, 2021, 11, 5636-5646.	11.2	21
10	An evaluation of palladium-based catalysts for the base-free borylation of alkenyl carboxylates. New Journal of Chemistry, 2021, 45, 20095-20098.	2.8	4
11	A Flow Process Built upon a Batch Foundation—Preparation of a Key Amino Alcohol Intermediate via Multistage Continuous Synthesis. Organic Process Research and Development, 2020, 24, 1927-1937.	2.7	7
12	Palladiumâ€Catalyzed Cross oupling of Alkenyl Carboxylates. Angewandte Chemie - International Edition, 2020, 59, 17277-17281.	13.8	22
13	Palladium atalyzed Cross oupling of Alkenyl Carboxylates. Angewandte Chemie, 2020, 132, 17430-17434.	2.0	7
14	Playing with Fire? A Safe and Effective Deactivation of Raney Cobalt using Aqueous Sodium Nitrate. Organic Process Research and Development, 2020, 24, 1180-1184.	2.7	2
15	Oxidative addition of activated aryl-carboxylates to Pd(0): divergent reactivity dependant on temperature and structure. Dalton Transactions, 2020, 49, 16067-16071.	3.3	9
16	Development and Scale-up of Continuous Electrocatalytic Hydrogenation of Functionalized Nitro Arenes, Nitriles, and Unsaturated Aldehydes. Organic Process Research and Development, 2019, 23, 1803-1812.	2.7	24
17	High-Throughput Discovery and Evaluation of a General Catalytic Method for <i>N</i> -Arylation of Weakly Nucleophilic Sulfonamides. Organic Letters, 2019, 21, 8981-8986.	4.6	21
18	Nucleophilic Aromatic Substitutions of 2-Halo-5-(sulfamoyl)benzoic Acids and <i>N</i> , <i>O</i> -Bis-alkylation via Phase Transfer Catalysis: Synthesis of RoRγ Inverse Agonist GSK2981278A. Organic Process Research and Development, 2019, 23, 1396-1406.	2.7	7

DAVID C LEITCH

#	Article	IF	CITATIONS
19	The Evolution of High-Throughput Experimentation in Pharmaceutical Development and Perspectives on the Future. Organic Process Research and Development, 2019, 23, 1213-1242.	2.7	279
20	Scalable and Chemoselective Synthesis of γ-Keto Esters and Acids via Pd-Catalyzed Carbonylation of Cyclic β-Chloro Enones. Organometallics, 2019, 38, 85-96.	2.3	5
21	The power and accessibility of high-throughput methods for catalysis research. Nature Catalysis, 2019, 2, 2-4.	34.4	65
22	Convergent Synthesis of the NS5B Inhibitor GSK8175 Enabled by Transition Metal Catalysis. Journal of Organic Chemistry, 2019, 84, 4680-4694.	3.2	26
23	Selective Continuous Flow Iodination Guided by Direct Spectroscopic Observation of Equilibrating Aryl Lithium Regioisomers. Organometallics, 2019, 38, 129-137.	2.3	6
24	Lewis Acid-Catalyzed Addition of Benzophenone Imine to Epoxides Enables the Selective Synthesis and Derivatization of Primary 1,2-Amino Alcohols. Organic Process Research and Development, 2018, 22, 641-649.	2.7	14
25	Mechanistic Insight Enables Practical, Scalable, Room Temperature Chan–Lam <i>N</i> -Arylation of <i>N</i> -Aryl Sulfonamides. ACS Catalysis, 2018, 8, 9560-9566.	11.2	57
26	Development and Cycloaddition Reactivity of a New Class of Pyridineâ€Based Mesoionic 1,3â€Dipole. Angewandte Chemie, 2017, 129, 6174-6178.	2.0	7
27	Development and Cycloaddition Reactivity of a New Class of Pyridineâ€Based Mesoionic 1,3â€Dipole. Angewandte Chemie - International Edition, 2017, 56, 6078-6082.	13.8	30
28	An Evaluation of Multiple Catalytic Systems for the Cyanation of 2,3-Dichlorobenzoyl Chloride: Application to the Synthesis of Lamotrigine. Organic Process Research and Development, 2017, 21, 1815-1821.	2.7	7
29	A Combined High-Throughput Screening and Reaction Profiling Approach toward Development of a Tandem Catalytic Hydrogenation for the Synthesis of Salbutamol. Organic Process Research and Development, 2017, 21, 1806-1814.	2.7	5
30	A palladium-catalysed multicomponent coupling approach to conjugated poly(1,3-dipoles) and polyheterocycles. Nature Communications, 2015, 6, 7411.	12.8	59
31	Upgrading Light Hydrocarbons: A Tandem Catalytic System for Alkane/Alkene Coupling. Topics in Catalysis, 2015, 58, 494-501.	2.8	27
32	Titanium amidate complexes as active catalysts for the synthesis of high molecular weight polyethylene. Canadian Journal of Chemistry, 2015, 93, 775-783.	1.1	6
33	Scope and Mechanism of Homogeneous Tantalum/Iridium Tandem Catalytic Alkane/Alkene Upgrading using Sacrificial Hydrogen Acceptors. Organometallics, 2014, 33, 3353-3365.	2.3	28
34	Bis(amidate)bis(amido) Titanium Complex: A Regioselective Intermolecular Alkyne Hydroamination Catalyst. Journal of Organic Chemistry, 2014, 79, 2015-2028.	3.2	70
35	Upgrading Light Hydrocarbons via Tandem Catalysis: A Dual Homogeneous Ta/Ir System for Alkane/Alkene Coupling. Journal of the American Chemical Society, 2013, 135, 10302-10305.	13.7	61
36	Design of Substituted Imidazolidinylpiperidinylbenzoic Acids as Chemokine Receptor 5 Antagonists: Potent Inhibitors of R5 HIV-1 Replication. Journal of Medicinal Chemistry, 2013, 56, 8049-8065.	6.4	8

DAVID C LEITCH

#	Article	IF	CITATIONS
37	Mechanistic Elucidation of Intramolecular Aminoalkene Hydroamination Catalyzed by a Tethered Bis(ureate) Complex: Evidence for Proton-Assisted C–N Bond Formation at Zirconium. Journal of the American Chemical Society, 2011, 133, 15453-15463.	13.7	84
38	Asymmetric hydroamination catalyzed by in situ generated chiral amidate and ureate complexes of zirconium— Probing the role of the tether in ligand design. Canadian Journal of Chemistry, 2011, 89, 1222-1229.	1.1	13
39	Isolation of Catalytic Intermediates in Hydroamination Reactions: Insertion of Internal Alkynes into a Zirconium–Amido Bond. Angewandte Chemie - International Edition, 2010, 49, 6382-6386.	13.8	60
40	Zirconium Alkyl Complexes Supported by Ureate Ligands: Synthesis, Characterization, and Precursors to Metalâ ^{^2} Element Multiple Bonds. Organometallics, 2010, 29, 5162-5172.	2.3	25
41	N,Oâ€Chelates of Group 4 Metals: Contrasting the Use of Amidates and Ureates in the Synthesis of Metal Dichlorides. European Journal of Inorganic Chemistry, 2009, 2009, 2691-2701.	2.0	30
42	Selective Câ^'H Activation α to Primary Amines. Bridging Metallaaziridines for Catalytic, Intramolecular α-Alkylation. Journal of the American Chemical Society, 2009, 131, 2116-2118.	13.7	172
43	Broadening the Scope of Group 4 Hydroamination Catalysis Using a Tethered Ureate Ligand. Journal of the American Chemical Society, 2009, 131, 18246-18247.	13.7	156
44	An Easy-To-Use, Regioselective, and Robust Bis(amidate) Titanium Hydroamination Precatalyst: Mechanistic and Synthetic Investigations toward the Preparation of Tetrahydroisoquinolines and Benzoquinolizine Alkaloids. Chemistry - A European Journal, 2007, 13, 2012-2022.	3.3	106
45	Chiral Neutral Zirconium Amidate Complexes for the Asymmetric Hydroamination of Alkenes. Angewandte Chemie - International Edition, 2006, 46, 354-358.	13.8	264
46	Intramolecular Hydroamination of Unactived Olefins with Ti(NMe2)4 as a Precatalyst ChemInform, 2005, 36, no.	0.0	0
47	Intramolecular Hydroamination of Unactived Olefins with Ti(NMe2)4as a Precatalyst. Organic Letters, 2005, 7, 1959-1962.	4.6	195
48	Beyond Bioisosteres: Divergent Synthesis of Azabicyclohexanes and Cyclobutenyl Amines from Bicyclobutanes. Angewandte Chemie, 0, , .	2.0	5