
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6570793/publications.pdf Version: 2024-02-01

Δρτημα Βροιώνι

#	Article	IF	CITATIONS
1	Test–Retest Reproducibility of In Vivo Magnetization Transfer Ratio and Saturation Index in Mice at 9.4 Tesla. Journal of Magnetic Resonance Imaging, 2022, 56, 893-903.	3.4	1
2	Repetitive mild traumatic brain injury in mice triggers a slowly developing cascade of long-term and persistent behavioral deficits and pathological changes. Acta Neuropathologica Communications, 2021, 9, 60.	5.2	31
3	Neurite orientation dispersion and density imaging in a rodent model of acute mild traumatic brain injury. Journal of Neuroimaging, 2021, 31, 879-892.	2.0	6
4	β2 Integrin CD11d/CD18: From Expression to an Emerging Role in Staged Leukocyte Migration. Frontiers in Immunology, 2021, 12, 775447.	4.8	11
5	Test-retest reproducibility of in vivo oscillating gradient and microscopic anisotropy diffusion MRI in mice at 9.4 Tesla. PLoS ONE, 2021, 16, e0255711.	2.5	5
6	Brain Metabolite Levels in Sedentary Women and Non-contact Athletes Differ From Contact Athletes. Frontiers in Human Neuroscience, 2020, 14, 593498.	2.0	5
7	Longitudinal changes of brain microstructure and function in nonconcussed female rugby players. Neurology, 2020, 95, e402-e412.	1.1	20
8	Linked MRI signatures of the brain's acute and persistent response to concussion in female varsity rugby players. NeuroImage: Clinical, 2019, 21, 101627.	2.7	19
9	The Loss of ATRX Increases Susceptibility to Pancreatic Injury and Oncogenic KRAS in Female But Not Male Mice. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 93-113.	4.5	14
10	Sox9 knockout mice have improved recovery following stroke. Experimental Neurology, 2018, 303, 59-71.	4.1	19
11	Reduced brain glutamine in female varsity rugby athletes after concussion and in non oncussed athletes after a season of play. Human Brain Mapping, 2018, 39, 1489-1499.	3.6	24
12	Pathologic Thr ¹⁷⁵ tau phosphorylation in CTE and CTE with ALS. Neurology, 2018, 90, e380-e387.	1.1	45
13	Anti-Chondroitin Sulfate Proteoglycan Strategies in Spinal Cord Injury: Temporal and Spatial Considerations Explain the Balance between Neuroplasticity and Neuroprotection. Journal of Neurotrauma, 2018, 35, 1958-1969.	3.4	7
14	Investigation of the role of tyrosine kinase receptor EPHA3 in colorectal cancer. Scientific Reports, 2017, 7, 41576.	3.3	9
15	The effectiveness of the anti-CD11d treatment is reduced in rat models of spinal cord injury that produce significant levels of intraspinal hemorrhage. Experimental Neurology, 2017, 295, 125-134.	4.1	12
16	Multiparametric MRI changes persist beyond recovery in concussed adolescent hockey players. Neurology, 2017, 89, 2157-2166.	1.1	83
17	Conditional Sox9 ablation improves locomotor recovery after spinal cord injury by increasing reactive sprouting. Experimental Neurology, 2016, 283, 1-15.	4.1	22
18	Metabolomics profiling of concussion in adolescent male hockey players: a novel diagnostic method. Metabolomics, 2016, 12, 1.	3.0	43

#	Article	IF	CITATIONS
19	Chronic Contusion Spinal Cord Injury Impairs Ejaculatory Reflexes in Male Rats: Partial Recovery by Systemic Infusions of Dopamine D3 Receptor Agonist 7OHDPAT. Journal of Neurotrauma, 2016, 33, 943-953.	3.4	14
20	CD11d integrin blockade reduces the systemic inflammatory response syndrome after traumatic brain injury in rats. Experimental Neurology, 2015, 271, 409-422.	4.1	49
21	Large animal and primate models of spinal cord injury for the testing of novel therapies. Experimental Neurology, 2015, 269, 154-168.	4.1	75
22	The putative tumor suppressor gene EphA3 fails to demonstrate a crucial role in murine lung tumorigenesis or morphogenesis. DMM Disease Models and Mechanisms, 2015, 8, 393-401.	2.4	9
23	Evaluation of the Calmodulin‧OX9 Interaction by "Magnetic Fishing―Coupled to Mass Spectrometry. ChemBioChem, 2014, 15, 2411-2419.	2.6	1
24	Metalloproteinase inhibition prevents inhibitory synapse reorganization and seizure genesis. Neurobiology of Disease, 2014, 70, 21-31.	4.4	62
25	Polysialylated NCAM and EphrinA/EphA Regulate Synaptic Development of GABAergic Interneurons in Prefrontal Cortex. Cerebral Cortex, 2013, 23, 162-177.	2.9	36
26	Conditional <i>Sox9</i> ablation reduces chondroitin sulfate proteoglycan levels and improves motor function following spinal cord injury. Glia, 2013, 61, 164-177.	4.9	70
27	Temporal changes in monocyte and macrophage subsets and microglial macrophages following spinal cord injury in the lys-egfp-ki mouse model. Journal of Neuroimmunology, 2013, 261, 7-20.	2.3	54
28	Treatment with an anti-CD11d integrin antibody reduces neuroinflammation and improves outcome in a rat model of repeated concussion. Journal of Neuroinflammation, 2013, 10, 26.	7.2	66
29	Microglia-derived TNFα induces apoptosis in neural precursor cells via transcriptional activation of the Bcl-2 family member Puma. Cell Death and Disease, 2013, 4, e538-e538.	6.3	112
30	Differential Detection and Distribution of Microglial and Hematogenous Macrophage Populations in the Injured Spinal Cord of <i>lys</i> -EGFP- <i>ki</i> Transgenic Mice. Journal of Neuropathology and Experimental Neurology, 2012, 71, 180-197.	1.7	53
31	CD11d Antibody Treatment Improves Recovery in Spinal Cord-Injured Mice. Journal of Neurotrauma, 2012, 29, 539-550.	3.4	36
32	A CD11d Monoclonal Antibody Treatment Reduces Tissue Injury and Improves Neurological Outcome after Fluid Percussion Brain Injury in Rats. Journal of Neurotrauma, 2012, 29, 2375-2392.	3.4	77
33	The Systemic Inflammatory Response after Spinal Cord Injury in the Rat Is Decreased by α4β1 Integrin Blockade. Journal of Neurotrauma, 2012, 29, 1626-1637.	3.4	40
34	Repeated Mild Lateral Fluid Percussion Brain Injury in the Rat Causes Cumulative Long-Term Behavioral Impairments, Neuroinflammation, and Cortical Loss in an Animal Model of Repeated Concussion. Journal of Neurotrauma, 2012, 29, 281-294.	3.4	155
35	Anti-CD11d monoclonal antibody treatment for rat spinal cord compression injury. Experimental Neurology, 2012, 233, 612-614.	4.1	5
36	The dark side of neuroplasticity. Experimental Neurology, 2012, 235, 133-141.	4.1	69

#	Article	IF	CITATIONS
37	A Selective Phosphodiesterase-4 Inhibitor Reduces Leukocyte Infiltration, Oxidative Processes, and Tissue Damage after Spinal Cord Injury. Journal of Neurotrauma, 2011, 28, 1035-1049.	3.4	45
38	Schwann Cell Coculture Improves the Therapeutic Effect of Bone Marrow Stromal Cells on Recovery in Spinal Cord-Injured Mice. Cell Transplantation, 2011, 20, 1065-1086.	2.5	30
39	CD11d integrin blockade reduces the systemic inflammatory response syndrome after spinal cord injury. Experimental Neurology, 2011, 231, 272-283.	4.1	54
40	The Use of Cellular Magnetic Resonance Imaging to Track the Fate of Iron-Labeled Multipotent Stromal Cells after Direct Transplantation in a Mouse Model of Spinal Cord Injury. Molecular Imaging and Biology, 2011, 13, 702-711.	2.6	42
41	Human Spinal Cord Injury Causes Specific Increases in Surface Expression of Beta Integrins on Leukocytes. Journal of Neurotrauma, 2011, 28, 269-280.	3.4	15
42	<i>In Vivo</i> Magnetic Resonance Imaging of Spinal Cord Injury in the Mouse. Journal of Neurotrauma, 2009, 26, 753-762.	3.4	26
43	Gene expression profiling in anti-CD11d mAb-treated spinal cord-injured rats. Journal of Neuroimmunology, 2009, 209, 104-113.	2.3	15
44	Segregation of Axial Motor and Sensory Pathways via Heterotypic Trans-Axonal Signaling. Science, 2008, 320, 233-236.	12.6	90
45	A critical role for the EphA3 receptor tyrosine kinase in heart development. Developmental Biology, 2007, 302, 66-79.	2.0	69
46	NGF mRNA is expressed in the dorsal root ganglia after spinal cord injury in the rat. Experimental Neurology, 2007, 205, 283-286.	4.1	25
47	Transcriptional regulation of scar gene expression in primary astrocytes. Glia, 2007, 55, 1145-1155.	4.9	106
48	Autonomic dysreflexia after spinal cord injury: central mechanisms and strategies for prevention. Progress in Brain Research, 2006, 152, 245-263.	1.4	103
49	Estrogen reduces the severity of autonomic dysfunction in spinal cord-injured male mice. Behavioural Brain Research, 2006, 171, 338-349.	2.2	24
50	Genetic approaches to autonomic dysreflexia. Progress in Brain Research, 2006, 152, 299-313.	1.4	10
51	NGF message and protein distribution in the injured rat spinal cord. Experimental Neurology, 2004, 188, 115-127.	4.1	86
52	Autonomic dysreflexia after spinal cord transection or compression in 129Sv, C57BL, and Wallerian degeneration slow mutant mice. Experimental Neurology, 2003, 183, 136-146.	4.1	27
53	Differential gene expression profiles in embryonic, adult-injured and adult-uninjured rat spinal cords. Molecular and Cellular Neurosciences, 2003, 24, 555-567.	2.2	17
54	EphA3 Null Mutants Do Not Demonstrate Motor Axon Guidance Defects. Molecular and Cellular Biology, 2003, 23, 8092-8098.	2.3	21

#	Article	IF	CITATIONS
55	Cloning of a Novel Prolyl 4-Hydroxylase Subunit Expressed in the Fibrous Cap of Human Atherosclerotic Plaque. Circulation, 2003, 108, 508-511.	1.6	48
56	Autonomic dysreflexia in a mouse model of spinal cord injury. Neuroscience, 2001, 108, 687-693.	2.3	40
57	Topographic Mapping from the Retina to the Midbrain Is Controlled by Relative but Not Absolute Levels of EphA Receptor Signaling. Cell, 2000, 102, 77-88.	28.9	338
58	Expression of theTyro4/Mek4/Cek4Gene Specifically Marks a Subset of Embryonic Motor Neurons and Their Muscle Targets. Molecular and Cellular Neurosciences, 1996, 7, 62-74.	2.2	86
59	The mouse dystonia musculorum gene is a neural isoform of bullous pemphigoid antigen 1. Nature Genetics, 1995, 10, 301-306.	21.4	249
60	Cloning and Characterization of the Neural Isoforms of Human Dystonin. Genomics, 1995, 29, 777-780.	2.9	55
61	Dystonin transcripts are altered and their levels are reduced in the mouse neurological mutant dt24J. Biochemistry and Cell Biology, 1995, 73, 605-609.	2.0	14
62	Dystonin Expression in the Developing Nervous System Predominates in the Neurons That Degenerate indystonia musculorumMutant Mice. Molecular and Cellular Neurosciences, 1995, 6, 509-520.	2.2	55
63	Human homolog of a mouse sequence from the dystonia musculorum locus is on Chromosome 6p12. Mammalian Genome, 1994, 5, 434-437.	2.2	14
64	The Genomic Structure of an Insertional Mutation in the Dystonia Musculorum Locus. Genomics, 1994, 20, 371-376.	2.9	33
65	A transgene containing lacZ inserted into the dystonia locus is expressed in neural tube. Nature, 1988, 335, 435-437.	27.8	201