Martin J Blunt

List of Publications by Citations

Source: https://exaly.com/author-pdf/6570661/martin-j-blunt-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 377
 23,119
 80
 139

 papers
 citations
 h-index
 g-index

 399
 26,973
 4.6
 7.6

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
377	Carbon capture and storage update. <i>Energy and Environmental Science</i> , 2014 , 7, 130-189	35.4	1404
376	Pore-scale imaging and modelling. Advances in Water Resources, 2013, 51, 197-216	4.7	1056
375	Flow in porous media pore-network models and multiphase flow. <i>Current Opinion in Colloid and Interface Science</i> , 2001 , 6, 197-207	7.6	600
374	Pore-network extraction from micro-computerized-tomography images. <i>Physical Review E</i> , 2009 , 80, 036307	2.4	592
373	Impact of relative permeability hysteresis on geological CO2 storage. <i>Water Resources Research</i> , 2006 , 42,	5.4	519
372	Tenth SPE Comparative Solution Project: A Comparison of Upscaling Techniques. <i>SPE Reservoir Evaluation and Engineering</i> , 2001 , 4, 308-317	2.3	512
371	Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow. <i>Advances in Water Resources</i> , 2002 , 25, 1069-1089	4.7	489
370	Predictive pore-scale modeling of two-phase flow in mixed wet media. <i>Water Resources Research</i> , 2004 , 40,	5.4	469
369	Prediction of relative permeability in simple porous media. <i>Physical Review A</i> , 1992 , 46, 2004-2011	2.6	361
368	Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method. <i>Journal of Computational Physics</i> , 2012 , 231, 5653-5668	4.1	297
36 7	Computations of Absolute Permeability on Micro-CT Images. <i>Mathematical Geosciences</i> , 2013 , 45, 103-7	1 25 5	248
366	Carbon dioxide in enhanced oil recovery. Energy Conversion and Management, 1993, 34, 1197-1204	10.6	245
365	Multiphase Flow in Permeable Media: A Pore-Scale Perspective 2017,		242
364	Pore-scale contact angle measurements at reservoir conditions using X-ray microtomography. <i>Advances in Water Resources</i> , 2014 , 68, 24-31	4.7	238
363	Pore-level modeling of wetting. <i>Physical Review E</i> , 1995 , 52, 6387-6403	2.4	238
362	Measurements of the capillary trapping of super-critical carbon dioxide in Berea sandstone. <i>Geophysical Research Letters</i> , 2011 , 38, n/a-n/a	4.9	226
361	Residual CO2 imaged with X-ray micro-tomography. <i>Geophysical Research Letters</i> , 2011 , 38, n/a-n/a	4.9	221

(2009-2004)

360	Prediction of permeability for porous media reconstructed using multiple-point statistics. <i>Physical Review E</i> , 2004 , 70, 066135	2.4	216	
359	Capillary trapping for geologic carbon dioxide storage IFrom pore scale physics to field scale implications. <i>International Journal of Greenhouse Gas Control</i> , 2015 , 40, 221-237	4.2	207	
358	Pore space reconstruction using multiple-point statistics. <i>Journal of Petroleum Science and Engineering</i> , 2005 , 46, 121-137	4.4	203	
357	Direct simulations of two-phase flow on micro-CT images of porous media and upscaling of pore-scale forces. <i>Advances in Water Resources</i> , 2014 , 74, 116-126	4.7	202	
356	A 3D Field-Scale Streamline-Based Reservoir Simulator. SPE Reservoir Engineering, 1997 , 12, 246-254		194	
355	Relative permeabilities from two- and three-dimensional pore-scale network modelling. <i>Transport in Porous Media</i> , 1991 , 6, 407	3.1	192	
354	Simulation and theory of two-phase flow in porous media. <i>Physical Review A</i> , 1992 , 46, 7680-7699	2.6	189	
353	Network extraction from sandstone and carbonate pore space images. <i>Journal of Petroleum Science and Engineering</i> , 2007 , 56, 219-231	4.4	172	
352	Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images. <i>Physical Review E</i> , 2013 , 87, 013011	2.4	169	
351	Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description. <i>Physical Review E</i> , 2005 , 71, 026301	2.4	169	
350	Reconstruction of three-dimensional porous media using generative adversarial neural networks. <i>Physical Review E</i> , 2017 , 96, 043309	2.4	164	
349	Pore-scale modeling and continuous time random walk analysis of dispersion in porous media. <i>Water Resources Research</i> , 2006 , 42,	5.4	163	
348	Signature of non-Fickian solute transport in complex heterogeneous porous media. <i>Physical Review Letters</i> , 2011 , 107, 204502	7.4	161	
347	Three-dimensional modeling of three phase imbibition and drainage. <i>Advances in Water Resources</i> , 1998 , 21, 121-143	4.7	161	
346	Pore-scale imaging of trapped supercritical carbon dioxide in sandstones and carbonates. <i>International Journal of Greenhouse Gas Control</i> , 2014 , 22, 1-14	4.2	158	
345	Comparison of residual oil cluster size distribution, morphology and saturation in oil-wet and water-wet sandstone. <i>Journal of Colloid and Interface Science</i> , 2012 , 375, 187-92	9.3	154	
344	Effects of Wettability on Three-Phase Flow in Porous Media Journal of Physical Chemistry B, 2000 , 104, 3833-3845	3.4	154	
343	Design of carbon dioxide storage in aquifers. <i>International Journal of Greenhouse Gas Control</i> , 2009 , 3, 195-205	4.2	148	

342	A New Model of Trapping and Relative Permeability Hysteresis for All Wettability Characteristics. SPE Journal, 2008 , 13, 277-288	3.1	146
341	Physically-based network modeling of multiphase flow in intermediate-wet porous media. <i>Journal of Petroleum Science and Engineering</i> , 1998 , 20, 117-125	4.4	143
340	Pore-scale modeling of longitudinal dispersion. Water Resources Research, 2004, 40,	5.4	140
339	Multi-scale multi-dimensional microstructure imaging of oil shale pyrolysis using X-ray micro-tomography, automated ultra-high resolution SEM, MAPS Mineralogy and FIB-SEM. <i>Applied Energy</i> , 2017 , 202, 628-647	10.7	138
338	Predictive network modeling of single-phase non-Newtonian flow in porous media. <i>Journal of Colloid and Interface Science</i> , 2003 , 264, 256-65	9.3	130
337	Generalized network modeling: Network extraction as a coarse-scale discretization of the void space of porous media. <i>Physical Review E</i> , 2017 , 96, 013312	2.4	126
336	The Imaging of Dynamic Multiphase Fluid Flow Using Synchrotron-Based X-ray Microtomography at Reservoir Conditions. <i>Transport in Porous Media</i> , 2015 , 110, 1-24	3.1	124
335	Micromodel Observation of the Role of Oil Layers in Three-Phase Flow. <i>Transport in Porous Media</i> , 1997 , 26, 277-297	3.1	123
334	Pore space reconstruction of vuggy carbonates using microtomography and multiple-point statistics. <i>Water Resources Research</i> , 2007 , 43,	5.4	121
333	An Empirical Model for Three-Phase Relative Permeability. SPE Journal, 2000, 5, 435-445	3.1	120
332	Measurement of aperture distribution, capillary pressure, relative permeability, and in situ saturation in a rock fracture using computed tomography scanning. <i>Water Resources Research</i> , 2001 , 37, 649-662	5.4	119
331	Modelling stress-dependent permeability in fractured rock including effects of propagating and bending fractures. <i>International Journal of Rock Mechanics and Minings Sciences</i> , 2013 , 57, 100-112	6	116
330	Dynamic three-dimensional pore-scale imaging of reaction in a carbonate at reservoir conditions. <i>Environmental Science & Environmental Science & Envi</i>	10.3	115
329	Pore-scale imaging of geological carbon dioxide storage under in situ conditions. <i>Geophysical Research Letters</i> , 2013 , 40, 3915-3918	4.9	115
328	Pore-scale intermittent velocity structure underpinning anomalous transport through 3-D porous media. <i>Geophysical Research Letters</i> , 2014 , 41, 6184-6190	4.9	112
327	Insights into non-Fickian solute transport in carbonates. Water Resources Research, 2013, 49, 2714-2728	5.4	112
326	Pore Scale Modeling of Rate Effects in Imbibition. <i>Transport in Porous Media</i> , 2000 , 40, 295-322	3.1	112
325	Capillary trapping in sandstones and carbonates: Dependence on pore structure. <i>Water Resources Research</i> , 2012 , 48,	5.4	110

(2007-2010)

324	Pore-scale modeling: Effects of wettability on waterflood oil recovery. <i>Journal of Petroleum Science and Engineering</i> , 2010 , 71, 169-178	4.4	110
323	Three-phase flow and gravity drainage in porous media. <i>Transport in Porous Media</i> , 1995 , 20, 77-103	3.1	109
322	Macroscopic parameters from simulations of pore scale flow. <i>Physical Review A</i> , 1990 , 42, 4780-4787	2.6	105
321	In situ characterization of mixed-wettability in alleservoir rock at subsurface conditions. <i>Scientific Reports</i> , 2017 , 7, 10753	4.9	102
320	Imaging of oil layers, curvature and contact angle in a mixed-wet and a water-wet carbonate rock. Water Resources Research, 2016 , 52, 1716-1728	5.4	101
319	Automatic measurement of contact angle in pore-space images. <i>Advances in Water Resources</i> , 2017 , 109, 158-169	4.7	100
318	X-ray tomography measurements of power-law cluster size distributions for the nonwetting phase in sandstones. <i>Physical Review E</i> , 2010 , 82, 056315	2.4	98
317	Wettability in complex porous materials, the mixed-wet state, and its relationship to surface roughness. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 8901-8906	11.5	97
316	Pore-by-pore capillary pressure measurements using X-ray microtomography at reservoir conditions: Curvature, snap-off, and remobilization of residual CO2. <i>Water Resources Research</i> , 2014 , 50, 8760-8774	5.4	97
315	Simultaneous oil recovery and residual gas storage: A pore-level analysis using in situ X-ray micro-tomography. <i>Fuel</i> , 2013 , 103, 905-914	7.1	96
314	Development of a pore network simulation model to study nonaqueous phase liquid dissolution. <i>Water Resources Research</i> , 2000 , 36, 439-454	5.4	94
313	Hydrocarbon Drainage along Corners of Noncircular Capillaries. <i>Journal of Colloid and Interface Science</i> , 1997 , 187, 11-21	9.3	93
312	The impact of porous media heterogeneity on non-Darcy flow behaviour from pore-scale simulation. <i>Advances in Water Resources</i> , 2016 , 95, 329-340	4.7	92
311	Dynamics of snap-off and pore-filling events during two-phase fluid flow in permeable media. <i>Scientific Reports</i> , 2017 , 7, 5192	4.9	92
310	Effects of Heterogeneity and Wetting on Relative Permeability Using Pore Level Modeling. <i>SPE Journal</i> , 1997 , 2, 70-87	3.1	92
309	CO2 injection impairment due to halite precipitation. <i>Energy Procedia</i> , 2009 , 1, 3507-3514	2.3	91
308	Automatic method for estimation of in situ effective contact angle from X-ray micro tomography images of two-phase flow in porous media. <i>Journal of Colloid and Interface Science</i> , 2017 , 496, 51-59	9.3	89
307	Pore-scale modeling of transverse dispersion in porous media. Water Resources Research, 2007, 43,	5.4	89

306	Simulating Flow in Heterogeneous Systems Using Streamtubes and Streamlines. <i>SPE Reservoir Engineering</i> , 1996 , 11, 5-12		85
305	Pore Level Modeling of the Effects of Wettability. SPE Journal, 1997, 2, 494-510	3.1	85
304	Reservoir condition imaging of reactive transport in heterogeneous carbonates using fast synchrotron tomography Effect of initial pore structure and flow conditions. <i>Chemical Geology</i> , 2016 , 428, 15-26	4.2	84
303	Streamline-based simulation of solute transport. Water Resources Research, 1999, 35, 3061-3078	5.4	84
302	Effect of spreading coefficient on the distribution of light non-aqueous phase liquid in the subsurface. <i>Journal of Contaminant Hydrology</i> , 1997 , 25, 1-19	3.9	82
301	Effect of fracture aperture variations on the dispersion of contaminants. <i>Water Resources Research</i> , 1999 , 35, 55-63	5.4	82
300	Microstructural imaging and characterization of oil shale before and after pyrolysis. Fuel, 2017, 197, 56	2 - 574	81
299	Dynamic fluid connectivity during steady-state multiphase flow in a sandstone. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 8187-8192	11.5	81
298	Simulation of counter-current imbibition in water-wet fractured reservoirs. <i>Journal of Petroleum Science and Engineering</i> , 2006 , 50, 21-39	4.4	80
297	Simulation of Flow and Dispersion on Pore-Space Images. SPE Journal, 2012, 17, 1131-1141	3.1	79
296	Three-Phase Relative Permeability of Water-Wet, Oil-Wet, and Mixed-Wet Sandpacks. <i>SPE Journal</i> , 2000 , 5, 82-91	3.1	78
295	Dynamic network modeling of two-phase drainage in porous media. <i>Physical Review E</i> , 2005 , 71, 01630	8 2.4	77
294	Modelling capillary trapping using finite-volume simulation of two-phase flow directly on micro-CT images. <i>Advances in Water Resources</i> , 2015 , 83, 102-110	4.7	76
293	Numerical study of the effects of particle shape and polydispersity on permeability. <i>Physical Review E</i> , 2009 , 80, 021304	2.4	76
292	Thermally Induced Wettability Alteration To Improve Oil Recovery in Fractured Reservoirs. <i>SPE Reservoir Evaluation and Engineering</i> , 2001 , 4, 179-186	2.3	75
291	Measurement of Nonwetting-Phase Trapping in Sandpacks. SPE Journal, 2010, 15, 274-281	3.1	74
2 90	A Streamline-Based 3D Field-Scale Compositional Reservoir Simulator 1997 ,		74
289	Network modeling of multiphase flow in fractures. <i>Advances in Water Resources</i> , 2001 , 24, 409-421	4.7	74

(2013-2000)

288	Experimental measurement of air-water interfacial area during gravity drainage and secondary imbibition in porous media. <i>Water Resources Research</i> , 2000 , 36, 885-890	5.4	74
287	Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. II. Results. <i>Physical Review E</i> , 2005 , 71, 026302	2.4	73
286	Numerical Modelling of Sub-pore Scale Events in Two-Phase Flow Through Porous Media. <i>Transport in Porous Media</i> , 2014 , 101, 191-213	3.1	72
285	Streamline-based simulation of carbon dioxide storage in a North Sea aquifer. <i>Water Resources Research</i> , 2006 , 42,	5.4	72
284	Multiscale Description of Shale Pore Systems by Scanning SAXS and WAXS Microscopy. <i>Energy & Energy</i> 8. 2016, 30, 10282-10297	4.1	70
283	Quantification of sub-resolution porosity in carbonate rocks by applying high-salinity contrast brine using X-ray microtomography differential imaging. <i>Advances in Water Resources</i> , 2016 , 96, 306-322	4.7	69
282	Capillary-Trapping Capacity of Sandstones and Sandpacks. SPE Journal, 2011, 16, 778-783	3.1	69
281	Analytic Analysis for Oil Recovery During Counter-Current Imbibition in Strongly Water-Wet Systems. <i>Transport in Porous Media</i> , 2005 , 58, 173-189	3.1	69
280	Stochastic Reconstruction of an Oolitic Limestone by Generative Adversarial Networks. <i>Transport in Porous Media</i> , 2018 , 125, 81-103	3.1	68
279	Predictive Pore-Scale Modeling of Single and Multiphase Flow. <i>Transport in Porous Media</i> , 2005 , 58, 23-4	13.1	67
278	Implicit flux limiting schemes for petroleum reservoir simulation. <i>Journal of Computational Physics</i> , 1992 , 102, 194-210	4.1	67
277	Streamline-based dual-porosity simulation of reactive transport and flow in fractured reservoirs. <i>Water Resources Research</i> , 2004 , 40,	5.4	66
276	The Effect of Wettability on Three-Phase Relative Permeability. <i>Transport in Porous Media</i> , 2000 , 39, 347-366	3.1	66
275	Network Modeling of Three-Phase Flow in Porous Media. SPE Journal, 1998, 3, 86-96	3.1	66
274	Pore-scale simulation of carbonate dissolution in micro-CT images. <i>Journal of Geophysical Research: Solid Earth,</i> 2016 , 121, 558-576	3.6	65
273	Pore-scale simulation of NMR response. <i>Journal of Petroleum Science and Engineering</i> , 2009 , 67, 168-178	34.4	64
272	Imaging and Measurement of Pore-Scale Interfacial Curvature to Determine Capillary Pressure Simultaneously With Relative Permeability. <i>Water Resources Research</i> , 2018 , 54, 7046-7060	5.4	63
271	Residual CO2 trapping in Indiana limestone. <i>Environmental Science & Environmental Science & Environme</i>	10.3	62

270	Pore-scale network modeling of Ellis and Herschel B ulkley fluids. <i>Journal of Petroleum Science and Engineering</i> , 2008 , 60, 105-124	4.4	62
269	Prediction of wettability variation and its impact on flow using pore- to reservoir-scale simulations. Journal of Petroleum Science and Engineering, 2003, 39, 231-246	4.4	62
268	Minimal surfaces in porous media: Pore-scale imaging of multiphase flow in an altered-wettability Bentheimer sandstone. <i>Physical Review E</i> , 2019 , 99, 063105	2.4	60
267	A fast method to equilibrate carbon dioxide with brine at high pressure and elevated temperature including solubility measurements. <i>Journal of Supercritical Fluids</i> , 2012 , 62, 55-59	4.2	60
266	Pore-Scale Modelling of Rate Effects in Waterflooding. <i>Transport in Porous Media</i> , 2010 , 83, 151-169	3.1	58
265	The Effect of Mixed Wettability on Pore-Scale Flow Regimes Based on a Flooding Experiment in Ketton Limestone. <i>Geophysical Research Letters</i> , 2019 , 46, 3225-3234	4.9	55
264	X-ray Microtomography of Intermittency in Multiphase Flow at Steady State Using a Differential Imaging Method. <i>Water Resources Research</i> , 2017 , 53, 10274-10292	5.4	55
263	Immiscible Displacements and Capillary Trapping in CO2 Storage. <i>Energy Procedia</i> , 2011 , 4, 4969-4976	2.3	55
262	Streamline Tracing on Curvilinear Structured and Unstructured Grids. SPE Journal, 2002, 7, 139-148	3.1	55
261	Multirate-Transfer Dual-Porosity Modeling of Gravity Drainage and Imbibition. <i>SPE Journal</i> , 2007 , 12, 77-88	3.1	54
260	Capillary-Dominated Fluid Displacement in Porous Media. <i>Annual Review of Fluid Mechanics</i> , 2019 , 51, 429-449	22	54
259	The impact of wettability and connectivity on relative permeability in carbonates: A pore network modeling analysis. <i>Water Resources Research</i> , 2012 , 48,	5.4	53
258	Predictions of dynamic changes in reaction rates as a consequence of incomplete mixing using pore scale reactive transport modeling on images of porous media. <i>Journal of Contaminant Hydrology</i> , 2015 , 179, 171-81	3.9	51
257	Analysis of counter-current imbibition with gravity in weakly water-wet systems. <i>Journal of Petroleum Science and Engineering</i> , 2005 , 48, 94-104	4.4	51
256	Reservoir Modeling for Flow Simulation by Use of Surfaces, Adaptive Unstructured Meshes, and an Overlapping-Control-Volume Finite-Element Method. <i>SPE Reservoir Evaluation and Engineering</i> , 2015 , 18, 115-132	2.3	50
255	Stochastic Seismic Waveform Inversion Using Generative Adversarial Networks as a Geological Prior. <i>Mathematical Geosciences</i> , 2020 , 52, 53-79	2.5	50
254	A thermodynamically consistent characterization of wettability in porous media using high-resolution imaging. <i>Journal of Colloid and Interface Science</i> , 2019 , 552, 59-65	9.3	49
253	Wetting boundary condition for the color-gradient lattice Boltzmann method: Validation with analytical and experimental data. <i>Advances in Water Resources</i> , 2018 , 116, 56-66	4.7	49

(2013-1999)

Nested gridding and streamline-based simulation for fast reservoir performance prediction. <i>Annals of Software Engineering</i> , 1999 , 3, 295-320		49	
A numerical model of two-phase flow at the micro-scale using the volume-of-fluid method. <i>Journal of Computational Physics</i> , 2018 , 357, 159-182	4.1	48	
A Physically Based Model of Dissolution of Nonaqueous Phase Liquids in the Saturated Zone. <i>Transport in Porous Media</i> , 2000 , 39, 227-255	3.1	47	
Modeling Oil Recovery in Mixed-Wet Rocks: Pore-Scale Comparison Between Experiment and Simulation. <i>Transport in Porous Media</i> , 2019 , 127, 393-414	3.1	47	
In situ characterization of immiscible three-phase flow at the pore scale for a water-wet carbonate rock. <i>Advances in Water Resources</i> , 2018 , 121, 446-455	4.7	47	
Dynamic imaging of oil shale pyrolysis using synchrotron X-ray microtomography. <i>Geophysical Research Letters</i> , 2016 , 43, 6799-6807	4.9	46	
Efficient chemical equilibrium calculations for geochemical speciation and reactive transport modelling. <i>Geochimica Et Cosmochimica Acta</i> , 2014 , 131, 301-322	5.5	46	
Validation of model predictions of pore-scale fluid distributions during two-phase flow. <i>Physical Review E</i> , 2018 , 97, 053104	2.4	46	
Analytical Solutions for Spontaneous Imbibition: Fractional-Flow Theory and Experimental Analysis. <i>SPE Journal</i> , 2016 , 21, 2308-2316	3.1	45	
Pore-to-field simulation of single-phase transport using continuous time random walks. <i>Advances in Water Resources</i> , 2008 , 31, 1527-1539	4.7	45	
A generalized streamline method to predict reservoir flow. <i>Petroleum Geoscience</i> , 1996 , 2, 259-269	1.9	44	
General Transfer Functions for Multiphase Flow in Fractured Reservoirs. SPE Journal, 2008, 13, 289-297	3.1	44	
Anomalous transport in heterogeneous media demonstrated by streamline-based simulation. <i>Geophysical Research Letters</i> , 2003 , 30,	4.9	44	
Dynamic reservoir-condition microtomography of reactive transport in complex carbonates: Effect of initial pore structure and initial brine pH. <i>Geochimica Et Cosmochimica Acta</i> , 2017 , 204, 267-285	5.5	43	
The Role of Local Instabilities in Fluid Invasion into Permeable Media. Scientific Reports, 2017, 7, 444	4.9	43	
Development of artificial neural network models for predicting water saturation and fluid distribution. <i>Journal of Petroleum Science and Engineering</i> , 2009 , 68, 197-208	4.4	43	
Pore Scale Observations of Trapped CO2 in Mixed-Wet Carbonate Rock: Applications to Storage in Oil Fields. <i>Environmental Science & Environmental Scie</i>	10.3	41	
Changes in Pore Structure and Connectivity Induced by CO2 Injection in Carbonates: A Combined Pore-Scale Approach. <i>Energy Procedia</i> , 2013 , 37, 5367-5378	2.3	41	
	A numerical model of two-phase flow at the micro-scale using the volume-of-fluid method. <i>Journal of Computational Physics</i> , 2018, 357, 159-182 A Physically Based Model of Dissolution of Nonaqueous Phase Liquids in the Saturated Zone. <i>Transport in Porous Media</i> , 2000, 39, 227-255 Modeling Oil Recovery in Mixed-Wet Rocks: Pore-Scale Comparison Between Experiment and Simulation. <i>Transport in Porous Media</i> , 2019, 127, 393-414 In situ characterization of immiscible three-phase flow at the pore scale for a water-wet carbonate rock. <i>Advances in Water Resources</i> , 2018, 121, 446-455 Dynamic imaging of oil shale pyrolysis using synchrotron X-ray microtomography. <i>Geophysical Research Letters</i> , 2016, 43, 6799-6807 Efficient chemical equilibrium calculations for geochemical speciation and reactive transport modelling. <i>Geochimica Et Cosmochimica Acta</i> , 2014, 131, 301-322 Validation of model predictions of pore-scale fluid distributions during two-phase flow. <i>Physical Review E</i> , 2018, 97, 053104 Analytical Solutions for Spontaneous Imbibition: Fractional-Flow Theory and Experimental Analysis. <i>SPE Journal</i> , 2016, 21, 2308-2316 Pore-to-field simulation of single-phase transport using continuous time random walks. <i>Advances in Water Resources</i> , 2008, 31, 1527-1539 A generalized streamline method to predict reservoir flow. <i>Petroleum Geoscience</i> , 1996, 2, 259-269 General Transfer Functions for Multiphase Flow in Fractured Reservoirs. <i>SPE Journal</i> , 2008, 13, 289-297 Anomalous transport in heterogeneous media demonstrated by streamline-based simulation. <i>Geophysical Research Letters</i> , 2003, 30, Dynamic reservoir-condition microtomography of reactive transport in complex carbonates: Effect of initial pore structure and initial brine pH. <i>Geochimica Et Cosmochimica Acta</i> , 2017, 204, 267-285 The Role of Local Instabilities in Fluid Invasion into Permeable Media. <i>Scientific Reports</i> , 2017, 7, 444 Development of artificial neural network models for predicting water saturation and fluid distribution. <i>Journal of P</i>	A numerical model of two-phase flow at the micro-scale using the volume-of-fluid method. Journal of Computational Physics, 2018, 357, 159-182 A Physically Based Model of Dissolution of Nonaqueous Phase Liquids in the Saturated Zone. Transport in Porous Media, 2000, 39, 227-255 Modeling Oil Recovery in Mixed-Wet Rocks: Pore-Scale Comparison Between Experiment and Simulation. Transport in Porous Media, 2019, 127, 393-414 In situ characterization of immiscible three-phase flow at the pore scale for a water-wet carbonate rock. Advances in Water Resources, 2018, 121, 446-455 Dynamic imaging of oil shale pyrolysis using synchrotron X-ray microtomography. Geophysical Research Letters, 2016, 43, 6799-6807 Efficient chemical equilibrium calculations for geochemical speciation and reactive transport modelling. Geochimica Et Cosmochimica Acta, 2014, 131, 301-322 Validation of model predictions of pore-scale fluid distributions during two-phase flow. Physical Review E, 2018, 97, 053104 Analytical Solutions for Spontaneous Imbibition: Fractional-Flow Theory and Experimental Analysis. SPE Journal, 2016, 21, 2308-2316 Pore-to-field simulation of single-phase transport using continuous time random walks. Advances in Water Resources, 2008, 31, 1527-1539 A generalized streamline method to predict reservoir flow. Petroleum Geoscience, 1996, 2, 259-269 1.9 General Transfer Functions for Multiphase Flow in Fractured Reservoirs. SPE Journal, 2008, 13, 289-297 3.1 Anomalous transport in heterogeneous media demonstrated by streamline-based simulation. Geophysical Research Letters, 2003, 30, Dynamic reservoir-condition microtomography of reactive transport in complex carbonates: Effect of initial pore structure and initial brine pH. Geochimica Et Cosmochimica Acta, 2017, 204, 267-285 The Role of Local Instabilities in Fluid Invasion into Permeable Media. Scientific Reports, 2017, 7, 444 Pore Scale Observations of Trapped CO2 in Mixed-Wet Carbonate Rock: Applications to Storage in Oil Fields. Environmental Science & Amp;	A numerical model of two-phase flow at the micro-scale using the volume-of-fluid method. Journal of Computational Physics, 2018, 357, 159-182 A Physically Based Model of Dissolution of Nonaqueous Phase Liquids in the Saturated Zone. Transport in Porous Media, 2000, 39, 227-255 Modeling Oil Recovery in Mixed-Wet Rocks: Pore-Scale Comparison Between Experiment and Simulation. Transport in Porous Media, 2019, 127, 393-414 In situ characterization of immiscible three-phase flow at the pore scale for a water-wet carbonate rock. Advances in Water Resources, 2018, 121, 446-455 Dynamic imaging of oil shale pyrolysis using synchrotron X-ray microtomography. Geophysical Research Letters, 2016, 43, 6799-6807 Efficient chemical equilibrium calculations for geochemical speciation and reactive transport modelling. Geochimica Et Cosmochimica Acta, 2014, 131, 301-322 Validation of model predictions of pore-scale fluid distributions during two-phase flow. Physical Review E, 2018, 97, 053104 Analytical Solutions for Spontaneous Imbibition: Fractional-Flow Theory and Experimental Analysis. 33-45 Pore-to-field simulation of single-phase transport using continuous time random walks. Advances in Water Resources, 2008, 31, 1527-1539 A generalized streamline method to predict reservoir flow. Petroleum Geoscience, 1996, 2, 259-269 4.9 44 Anomalous transport in heterogeneous media demonstrated by streamline-based simulation. Geophysical Research Letters, 2003, 30, Dynamic reservoir-condition microtomography of reactive transport in complex carbonates: Effect of initial pore structure and initial brine pH. Geochimica Et Cosmochimica Acta, 2017, 204, 267-285 The Role of Local Instabilities in Fluid Invasion into Permeable Media. Scientific Reports, 2017, 7, 444 Pore Scale Observations of Trapped CO2 in Mixed-Wet Carbonate Rock: Applications to Storage in Oil Fields. Environmental Science & amp; Technology, 2016, 50, 10282-90 Changes in Pore Structure and Connectivity Induced by CO2 Injection in Carbonates: A Combined

234	Artificial neural networks workflow and its application in the petroleum industry. <i>Neural Computing and Applications</i> , 2012 , 21, 409-421	4.8	41
233	Role of geomechanically grown fractures on dispersive transport in heterogeneous geological formations. <i>Physical Review E</i> , 2011 , 84, 056301	2.4	41
232	Measurements of non-wetting phase trapping applied to carbon dioxide storage. <i>International Journal of Greenhouse Gas Control</i> , 2010 , 4, 283-288	4.2	41
231	Effects of wettability and pore-level displacement on hydrocarbon trapping. <i>Advances in Water Resources</i> , 2008 , 31, 503-512	4.7	41
230	Determination of Water-Oil Interfacial Area during 3-Phase Gravity Drainage in Porous Media. <i>Journal of Colloid and Interface Science</i> , 2000 , 221, 308-312	9.3	41
229	Reaction Rates in Chemically Heterogeneous Rock: Coupled Impact of Structure and Flow Properties Studied by X-ray Microtomography. <i>Environmental Science & Description (March 1988)</i> , 2017, 51, 4108	-4976	40
228	The effect of wettability on capillary trapping in carbonates. Advances in Water Resources, 2016, 90, 36-	5 <u>ф</u> .7	40
227	4D in situ synchrotron X-ray tomographic microscopy and laser-based heating study of oil shale pyrolysis. <i>Applied Energy</i> , 2019 , 235, 1468-1475	10.7	40
226	4D multi-scale imaging of reactive flow in carbonates: Assessing the impact of heterogeneity on dissolution regimes using streamlines at multiple length scales. <i>Chemical Geology</i> , 2018 , 481, 27-37	4.2	39
225	Three-dimensional streamline-based simulation of non-isothermal two-phase flow in heterogeneous porous media. <i>Computers and Fluids</i> , 2014 , 103, 116-131	2.8	39
224	Comparison of deterministic with stochastic fracture models in water-flooding numerical simulations. <i>AAPG Bulletin</i> , 2009 , 93, 1633-1648	2.5	38
223	Simulation of multiphase flow in fractured reservoirs using a fracture-only model with transfer functions. <i>Computational Geosciences</i> , 2010 , 14, 527-538	2.7	38
222	Three-phase threshold capillary pressures in noncircular capillary tubes with different wettabilities including contact angle hysteresis. <i>Physical Review E</i> , 2004 , 70, 061603	2.4	38
221	Analysis of Imbibition in Mixed-Wet Rocks Using Pore-Scale Modeling. SPE Journal, 2005, 10, 466-474	3.1	38
220	Field observations of a capillary fringe before and after a rainy season. <i>Journal of Contaminant Hydrology</i> , 2000 , 44, 103-118	3.9	38
219	An improved pore-network model including viscous coupling effects using direct simulation by the lattice Boltzmann method. <i>Advances in Water Resources</i> , 2017 , 100, 26-34	4.7	37
218	Pore occupancy, relative permeability and flow intermittency measurements using X-ray micro-tomography in a complex carbonate. <i>Advances in Water Resources</i> , 2019 , 129, 56-69	4.7	36
217	Multiphase flow predictions from carbonate pore space images using extracted network models. Water Resources Research, 2008, 44,	5.4	36

(2020-2020)

216	Advances in carbon capture, utilization and storage. <i>Applied Energy</i> , 2020 , 278, 115627	10.7	36
215	A review of the phenomenon of counter-current spontaneous imbibition: Analysis and data interpretation. <i>Journal of Petroleum Science and Engineering</i> , 2019 , 180, 456-470	4.4	35
214	Multiphase Flow Characteristics of Heterogeneous Rocks From CO2 Storage Reservoirs in the United Kingdom. <i>Water Resources Research</i> , 2018 , 54, 729-745	5.4	35
213	Pore-scale network simulation of NMR response in two-phase flow. <i>Journal of Petroleum Science and Engineering</i> , 2010 , 72, 1-9	4.4	35
212	On the Structure and Flow Processes in the Capillary Fringe of Phreatic Aquifers. <i>Transport in Porous Media</i> , 1997 , 28, 159-180	3.1	35
211	Predictive Pore-Scale Network Modeling 2003 ,		35
210	Reactive transport modelling of geologic CO2 sequestration in saline aquifers: The influence of pure CO2 and of mixtures of CO2 with CH4 on the sealing capacity of cap rock at 37°C and 100bar. <i>Chemical Geology</i> , 2014 , 367, 39-50	4.2	34
209	Numerical Simulation of Oil Recovery After Cross-Linked Polymer Flooding. <i>Journal of Canadian Petroleum Technology</i> , 2009 , 48, 37-41		34
208	Streamline-Based Dual Porosity Simulation of Fractured Reservoirs 2003,		34
207	Comparison of streamline-based and grid-based dual porosity simulation. <i>Journal of Petroleum Science and Engineering</i> , 2004 , 43, 129-137	4.4	34
206	Measurement of Three Phase Relative Permeability during Gravity Drainage using CT 1998,		34
205	Predictive Theory for Viscous Fingering in Compositional Displacement. <i>SPE Reservoir Engineering</i> , 1994 , 9, 73-80		34
204	Interface control volume finite element method for modelling multi-phase fluid flow in highly heterogeneous and fractured reservoirs. <i>Journal of Computational Physics</i> , 2015 , 298, 41-61	4.1	33
203	Generalized network modeling of capillary-dominated two-phase flow. <i>Physical Review E</i> , 2018 , 97, 023	3 <u>0.8</u>	33
202	Pore-scale X-ray imaging with measurement of relative permeability, capillary pressure and oil recovery in a mixed-wet micro-porous carbonate reservoir rock. <i>Fuel</i> , 2020 , 268, 117018	7.1	32
201	Reservoir-condition pore-scale imaging of dolomite reaction with supercritical CO 2 acidified brine: Effect of pore-structure on reaction rate using velocity distribution analysis. <i>International Journal of Greenhouse Gas Control</i> , 2018 , 68, 99-111	4.2	32
200	Dipping open aquifers The effect of top-surface topography and heterogeneity on CO2 storage efficiency. <i>International Journal of Greenhouse Gas Control</i> , 2013 , 17, 318-331	4.2	32
199	Coupled generative adversarial and auto-encoder neural networks to reconstruct three-dimensional multi-scale porous media. <i>Journal of Petroleum Science and Engineering</i> , 2020 , 186, 106794	4.4	32

198	A Sensitivity Study of the Effect of Image Resolution on Predicted Petrophysical Properties. Transport in Porous Media, 2015 , 110, 157-169	3.1	31
197	Streamline-Based Simulation of Non-Newtonian Polymer Flooding. SPE Journal, 2010, 15, 895-905	3.1	31
196	Dual Mesh Method for Upscaling in Waterflood Simulation. <i>Transport in Porous Media</i> , 2004 , 55, 71-89	3.1	31
195	How to predict viscous fingering in three component flow. <i>Transport in Porous Media</i> , 1993 , 12, 207-236	3.1	31
194	Pore-scale numerical simulation of low salinity water flooding using the lattice Boltzmann method. Journal of Colloid and Interface Science, 2020 , 566, 444-453	9.3	30
193	A Rigorous Pore-to-Field-Scale Simulation Method for Single-Phase Flow Based on Continuous-Time Random Walks. <i>SPE Journal</i> , 2009 , 14, 88-94	3.1	30
192	Three-phase flow and wetability effects in triangular capillaries. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1999 , 155, 259-276	5.1	30
191	Estimation of relative permeability and capillary pressure from mass imbibition experiments. <i>Advances in Water Resources</i> , 2018 , 115, 88-94	4.7	29
190	Continuum-scale characterization of solute transport based on pore-scale velocity distributions. <i>Geophysical Research Letters</i> , 2015 , 42, 7537-7545	4.9	29
189	Streamline-based simulation of advectived ispersive solute transport. <i>Advances in Water Resources</i> , 2004 , 27, 913-924	4.7	29
188	Behavior of Nonaqueous Phase Liquids in Fractured Porous Media under Two-Phase Flow Conditions. <i>Transport in Porous Media</i> , 2000 , 38, 189-203	3.1	29
187	Microscale solute transport and precipitation in complex rock during drying. <i>Geophysical Research Letters</i> , 2014 , 41, 8369-8376	4.9	28
186	Laboratory investigation of capillary trapping under mixed-wet conditions. <i>Water Resources Research</i> , 2013 , 49, 4311-4319	5.4	28
185	Pore-scale Simulation of Water Alternate Gas Injection. <i>Transport in Porous Media</i> , 2007 , 66, 259-286	3.1	28
184	A functional relation for field-scale nonaqueous phase liquid dissolution developed using a pore network model. <i>Journal of Contaminant Hydrology</i> , 2001 , 48, 89-119	3.9	28
183	Analytical and numerical investigations of spontaneous imbibition in porous media. <i>Water Resources Research</i> , 2016 , 52, 7284-7310	5.4	27
182	Time-of-Flight Distributions and Breakthrough Curves in Heterogeneous Porous Media Using a Pore-Scale Streamline Tracing Algorithm. <i>Transport in Porous Media</i> , 2015 , 109, 317-336	3.1	27
181	Wettability effects in three-phase gravity drainage. <i>Journal of Petroleum Science and Engineering</i> , 1998 , 20, 203-211	4.4	27

(2021-2006)

180	Analytical and numerical analysis of oil recovery by gravity drainage. <i>Journal of Petroleum Science and Engineering</i> , 2006 , 54, 55-69	4.4	27
179	Multicomponent mass transfer across water films during hydrocarbon gas injection. <i>Chemical Engineering Science</i> , 2003 , 58, 2377-2388	4.4	27
178	Experimental and Analytical Investigation of Spontaneous Imbibition in Water-Wet Carbonates. <i>Transport in Porous Media</i> , 2016 , 115, 189-207	3.1	27
177	Pore-Scale Dissolution by CO2 Saturated Brine in a Multimineral Carbonate at Reservoir Conditions: Impact of Physical and Chemical Heterogeneity. <i>Water Resources Research</i> , 2019 , 55, 3171-3193	5.4	27
176	The Impact of Pore Structure Heterogeneity, Transport, and Reaction Conditions on Fluid Fluid Reaction Rate Studied on Images of Pore Space. <i>Transport in Porous Media</i> , 2016 , 115, 215-237	3.1	26
175	Elliptic Regions and Stable Solutions for Three-Phase flow in Porous Media. <i>Transport in Porous Media</i> , 2002 , 48, 249-269	3.1	26
174	Polymer flooding design and optimization under economic uncertainty. <i>Journal of Petroleum Science and Engineering</i> , 2014 , 124, 46-59	4.4	25
173	Remobilization of residual non-aqueous phase liquid in porous media by freeze-thaw cycles. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	25
172	Pore-Scale Modeling Of Three-Phase Flow In Mixed-Wet Systems 2002,		25
171	Dynamics of enhanced gas trapping applied to CO2 storage in the presence of oil using synchrotron X-ray micro tomography. <i>Applied Energy</i> , 2020 , 259, 114136	10.7	25
170	Robust optimisation of CO2 sequestration strategies under geological uncertainty using adaptive sparse grid surrogates. <i>Computational Geosciences</i> , 2014 , 18, 763-778	2.7	24
169	A robust and efficient numerical method for multiphase equilibrium calculations: Application to CO2BrineEock systems at high temperatures, pressures and salinities. <i>Advances in Water Resources</i> , 2013 , 62, 409-430	4.7	24
168	Open or closed? A discussion of the mistaken assumptions in the Economides pressure analysis of carbon sequestration. <i>Journal of Petroleum Science and Engineering</i> , 2010 , 74, 107-110	4.4	24
167	Criteria for three-fluid configurations including layers in a pore with nonuniform wettability. <i>Water Resources Research</i> , 2007 , 43,	5.4	24
166	Validating the Generalized Pore Network Model Using Micro-CT Images of Two-Phase Flow. <i>Transport in Porous Media</i> , 2019 , 130, 405-424	3.1	23
165	Prediction of Wettability Variation Within an Oil/Water Transition Zone and Its Impact on Production. <i>SPE Journal</i> , 2005 , 10, 185-195	3.1	23
164	Scaling structure of viscous fingering. <i>Physical Review A</i> , 1988 , 37, 3935-3941	2.6	23
163	Deep learning in pore scale imaging and modeling. <i>Earth-Science Reviews</i> , 2021 , 215, 103555	10.2	23

162	The architectural design of smart ventilation and drainage systems in termite nests. <i>Science Advances</i> , 2019 , 5, eaat8520	14.3	22
161	Design of foam-assisted carbon dioxide storage in a North Sea aquifer using streamline-based simulation. <i>International Journal of Greenhouse Gas Control</i> , 2015 , 33, 113-121	4.2	22
160	Visualization and quantification of capillary drainage in the pore space of laminated sandstone by a porous plate method using differential imaging X-ray microtomography. <i>Water Resources Research</i> , 2017 , 53, 7457-7468	5.4	22
159	Pore-space structure and average dissolution rates: A simulation study. <i>Water Resources Research</i> , 2016 , 52, 7198-7212	5.4	22
158	Spatial Correlation of Contact Angle and Curvature in Pore-Space Images. <i>Water Resources Research</i> , 2018 , 54, 6133-6152	5.4	22
157	Quantification of Uncertainty and Best Practice in Computing Interfacial Curvature from Complex Pore Space Images. <i>Materials</i> , 2019 , 12,	3.5	21
156	A three-phase four-component streamline-based simulator to study carbon dioxide storage. <i>Computational Geosciences</i> , 2009 , 13, 493-509	2.7	21
155	Measurements of Non-Wetting Phase Trapping Applied to Carbon Dioxide Storage. <i>Energy Procedia</i> , 2009 , 1, 3173-3180	2.3	21
154	Determination of finger shape using the dynamic capillary pressure. <i>Water Resources Research</i> , 2000 , 36, 2781-2785	5.4	21
153	Polymer adsorption and electron binding on rough and fractal surfaces. <i>Macromolecules</i> , 1989 , 22, 145	8- <u>4</u> .466	21
153 152	Polymer adsorption and electron binding on rough and fractal surfaces. <i>Macromolecules</i> , 1989 , 22, 145 Pore-scale modelling and sensitivity analyses of hydrogen-brine multiphase flow in geological porous media. <i>Scientific Reports</i> , 2021 , 11, 8348	8- ქ.4 66 4.9	21
	Pore-scale modelling and sensitivity analyses of hydrogen-brine multiphase flow in geological		
152	Pore-scale modelling and sensitivity analyses of hydrogen-brine multiphase flow in geological porous media. <i>Scientific Reports</i> , 2021 , 11, 8348	4.9	21
152 151	Pore-scale modelling and sensitivity analyses of hydrogen-brine multiphase flow in geological porous media. <i>Scientific Reports</i> , 2021 , 11, 8348 A chemical kinetics algorithm for geochemical modelling. <i>Applied Geochemistry</i> , 2015 , 55, 46-61 Analytical Solutions to Multiphase First-Contact Miscible Models with Viscous Fingering. <i>Transport</i>	4.9	21
152 151 150	Pore-scale modelling and sensitivity analyses of hydrogen-brine multiphase flow in geological porous media. <i>Scientific Reports</i> , 2021 , 11, 8348 A chemical kinetics algorithm for geochemical modelling. <i>Applied Geochemistry</i> , 2015 , 55, 46-61 Analytical Solutions to Multiphase First-Contact Miscible Models with Viscous Fingering. <i>Transport in Porous Media</i> , 2006 , 64, 339-373 In situ pore-scale analysis of oil recovery during three-phase near-miscible CO2 injection in a	4·9 3·5 3·1	20 20
152 151 150	Pore-scale modelling and sensitivity analyses of hydrogen-brine multiphase flow in geological porous media. <i>Scientific Reports</i> , 2021 , 11, 8348 A chemical kinetics algorithm for geochemical modelling. <i>Applied Geochemistry</i> , 2015 , 55, 46-61 Analytical Solutions to Multiphase First-Contact Miscible Models with Viscous Fingering. <i>Transport in Porous Media</i> , 2006 , 64, 339-373 In situ pore-scale analysis of oil recovery during three-phase near-miscible CO2 injection in a water-wet carbonate rock. <i>Advances in Water Resources</i> , 2019 , 134, 103432 Streamline-Based Method With Full-Physics Forward Simulation for History-Matching Performance	4·9 3·5 3.1 4·7	21202019
152 151 150 149	Pore-scale modelling and sensitivity analyses of hydrogen-brine multiphase flow in geological porous media. <i>Scientific Reports</i> , 2021 , 11, 8348 A chemical kinetics algorithm for geochemical modelling. <i>Applied Geochemistry</i> , 2015 , 55, 46-61 Analytical Solutions to Multiphase First-Contact Miscible Models with Viscous Fingering. <i>Transport in Porous Media</i> , 2006 , 64, 339-373 In situ pore-scale analysis of oil recovery during three-phase near-miscible CO2 injection in a water-wet carbonate rock. <i>Advances in Water Resources</i> , 2019 , 134, 103432 Streamline-Based Method With Full-Physics Forward Simulation for History-Matching Performance Data of a North Sea Field. <i>SPE Journal</i> , 2003 , 8, 171-180	4·9 3·5 3.1 4·7	21 20 20 19

(2015-2018)

144	Partial dissolution of carbonate rock grains during reactive CO2-saturated brine injection under reservoir conditions. <i>Advances in Water Resources</i> , 2018 , 122, 27-36	4.7	19	
143	Constraints on Contact Angles for Multiple Phases in Thermodynamic Equilibrium. <i>Journal of Colloid and Interface Science</i> , 2001 , 239, 281-282	9.3	18	
142	Pore-scale dynamics and the multiphase Darcy law. <i>Physical Review Fluids</i> , 2020 , 5,	2.8	18	
141	Pore-Scale Modeling of Multiphase Flow in Fractures and Matrix/Fracture Transfer. <i>SPE Journal</i> , 2001 , 6, 126-136	3.1	17	
140	Theory of Viscous Fingering in Two Phase, Three Component Flow. <i>SPE Advanced Technology Series</i> , 1994 , 2, 52-60		17	
139	Screening in multifractal growth. <i>Physical Review A</i> , 1989 , 39, 3591-3596	2.6	17	
138	Reservoir Modeling for Flow Simulation Using Surfaces, Adaptive Unstructured Meshes and Control-Volume-Finite-Element Methods 2013 ,		16	
137	Pore-scale mechanisms of CO storage in oilfields. <i>Scientific Reports</i> , 2020 , 10, 8534	4.9	16	
136	Dynamics of fluid displacement in mixed-wet porous media. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2020 , 476, 20200040	2.4	16	
135	The impact of capillary backpressure on spontaneous counter-current imbibition in porous media. <i>Advances in Water Resources</i> , 2017 , 107, 405-420	4.7	15	
134	A study to investigate viscous coupling effects on the hydraulic conductance of fluid layers in two-phase flow at the pore level. <i>Journal of Colloid and Interface Science</i> , 2018 , 522, 299-310	9.3	15	
133	Impact of Reservoir Conditions on CO2-brine Relative Permeability in Sandstones. <i>Energy Procedia</i> , 2014 , 63, 5577-5585	2.3	15	
132	Three-phase measurements of oil and gas trapping in sand packs. <i>Advances in Water Resources</i> , 2009 , 32, 1535-1542	4.7	15	
131	Compressible Streamline-Based Simulation With Changes in Oil Composition. <i>SPE Reservoir Evaluation and Engineering</i> , 2009 , 12, 963-973	2.3	15	
130	Capillary Trapping in Water-Wet Sandstones: Coreflooding Experiments and Pore-Network Modeling 2010 ,		15	
129	Pore-Scale Modeling of Three-Phase Flow and the Effects of Wettability 2000,		15	
128	Time-resolved synchrotron X-ray micro-tomography datasets of drainage and imbibition in carbonate rocks. <i>Scientific Data</i> , 2018 , 5, 180265	8.2	15	
127	Prediction of three-phase oil relative permeability through a sigmoid-based model. <i>Journal of Petroleum Science and Engineering</i> , 2015 , 126, 190-200	4.4	14	

126	Intermittent fluid connectivity during two-phase flow in a heterogeneous carbonate rock. <i>Physical Review E</i> , 2019 , 100, 043103	2.4	14
125	An exact particle tracking algorithm for advective-dispersive transport in networks with complete mixing at nodes. <i>Water Resources Research</i> , 2006 , 42,	5.4	14
124	Pore-scale imaging with measurement of relative permeability and capillary pressure on the same reservoir sandstone sample under water-wet and mixed-wet conditions. <i>Advances in Water Resources</i> , 2020 , 146, 103786	4.7	14
123	Statistical scaling of pore-scale Lagrangian velocities in natural porous media. <i>Physical Review E</i> , 2014 , 90, 023013	2.4	13
122	Polymer Flooding Design and Optimization Under Uncertainty 2011,		13
121	Quantifying uncertainty in reservoir performance using streamtubes. <i>Mathematical Geosciences</i> , 1996 , 28, 843-856		13
120	Mechanisms controlling fluid breakup and reconnection during two-phase flow in porous media. <i>Physical Review E</i> , 2019 , 100, 043115	2.4	12
119	Statistical Scaling of Geometric Characteristics in Millimeter Scale Natural Porous Media. <i>Transport in Porous Media</i> , 2014 , 101, 465-475	3.1	12
118	Design of Simultaneous Enhanced Oil Recovery and Carbon Dioxide Storage With Potential Application to Offshore Trinidad. <i>SPE Journal</i> , 2013 , 18, 345-354	3.1	12
117	Topological Analysis of Foams and Tetrahedral Structures. <i>Advanced Engineering Materials</i> , 2009 , 11, 169-176	3.5	12
116	Modelling of multispecies reactive transport on pore-space images. <i>Advances in Water Resources</i> , 2019 , 127, 192-208	4.7	11
115	Control of Numerical Dispersion in Streamline-Based Simulations of Augmented Waterflooding. <i>SPE Journal</i> , 2013 , 18, 1102-1111	3.1	11
114	Using energy balance to determine pore-scale wettability. <i>Journal of Colloid and Interface Science</i> , 2020 , 576, 486-495	9.3	10
113	Droplet and Percolation Network Interactions in a Fuel Cell Gas Diffusion Layer. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 084506	3.9	10
112	Prediction Of Wettability Variation And Its Impact On Waterflooding Using Pore- To Reservoir-Scale Simulation 2002 ,		10
111	Verifying Pore Network Models of Imbibition in Rocks Using Time-Resolved Synchrotron Imaging. Water Resources Research, 2020 , 56, e2019WR026587	5.4	10
110	The human exposome and health in the Anthropocene. <i>International Journal of Epidemiology</i> , 2021 , 50, 378-389	7.8	10
109	Dynamics of water injection in an oil-wet reservoir rock at subsurface conditions: Invasion patterns and pore-filling events. <i>Physical Review E</i> , 2020 , 102, 023110	2.4	10

(2021-2019)

108	Mechanisms of Microscopic Displacement During Enhanced Oil Recovery in Mixed-Wet Rocks Revealed Using Direct Numerical Simulation. <i>Transport in Porous Media</i> , 2019 , 130, 731-749	3.1	9
107	An Experimental Study of Three-Phase Trapping in Sand Packs. <i>Transport in Porous Media</i> , 2014 , 103, 421-436	3.1	9
106	Low-Salinity Waterflood Simulation: Mechanistic and Phenomenological Models 2015,		9
105	Dynamic Pore-scale Imaging of Reactive Transport in Heterogeneous Carbonates at Reservoir Conditions. <i>Energy Procedia</i> , 2014 , 63, 5503-5511	2.3	9
104	Predicting the Impact of Non-Newtonian Rheology on Relative Permeability Using Pore-Scale Modeling 2004 ,		9
103	Effect of Composition on Waterblocking for Multicomponent Gasfloods 2002,		9
102	Accurate Calibration of Empirical Viscous Fingering Models. <i>Oil & Gas Science & Technology</i> , 1991 , 46, 311-324		9
101	Pore-by-pore modeling, analysis, and prediction of two-phase flow in mixed-wet rocks. <i>Physical Review E</i> , 2020 , 102, 023302	2.4	9
100	In Situ Characterization of Three-Phase Flow in Mixed-Wet Porous Media Using Synchrotron Imaging. <i>Water Resources Research</i> , 2020 , 56, e2020WR027873	5.4	9
99	Pore-scale imaging and analysis of low salinity waterflooding in a heterogeneous carbonate rock at reservoir conditions. <i>Scientific Reports</i> , 2021 , 11, 15063	4.9	9
98	Pore-scale characterization of carbon dioxide storage at immiscible and near-miscible conditions in altered-wettability reservoir rocks. <i>International Journal of Greenhouse Gas Control</i> , 2021 , 105, 103232	4.2	9
97	Evaluation of methods using topology and integral geometry to assess wettability. <i>Journal of Colloid and Interface Science</i> , 2020 , 576, 99-108	9.3	8
96	Optimization of image quality and acquisition time for lab-based X-ray microtomography using an iterative reconstruction algorithm. <i>Advances in Water Resources</i> , 2018 , 115, 112-124	4.7	8
95	Reservoir condition pore-scale imaging of multiple fluid phases using X-ray microtomography. Journal of Visualized Experiments, 2015 ,	1.6	8
94	A segregated flow scheme to control numerical dispersion for multi-component flow simulations. <i>Computational Geosciences</i> , 2012 , 16, 335-350	2.7	8
93	Enhanced solubility trapping of CO2 in fractured reservoirs. <i>Energy Procedia</i> , 2011 , 4, 4961-4968	2.3	8
92	A Streamline-Based Method for Assisted History Matching Applied to. SPE Journal, 2004, 9, 437-449	3.1	8
91	Pore-Scale Imaging and Analysis of Wettability Order, Trapping and Displacement in Three-Phase Flow in Porous Media with Various Wettabilities. <i>Transport in Porous Media</i> , 2021 , 140, 59	3.1	8

90	Pore-scale imaging of displacement patterns in an altered-wettability carbonate. <i>Chemical Engineering Science</i> , 2021 , 235, 116464	4.4	8
89	Large-scale Invasion Percolation with Trapping for Upscaling Capillary-Controlled Darcy-scale Flow. <i>Transport in Porous Media</i> , 2018 , 121, 479-506	3.1	8
88	Modelling and upscaling of transport in carbonates during dissolution: Validation and calibration with NMR experiments. <i>Journal of Contaminant Hydrology</i> , 2018 , 212, 85-95	3.9	7
87	Analysis of Injectivity Decline in Some Offshore Water Injectors 2014 ,		7
86	Simulation of Flow and Dispersion on Pore-Space Images 2010 ,		7
85	An Empirical Model for Three-Phase Relative Permeability 1999 ,		7
84	Geometry of multifractal systems. <i>Physical Review A</i> , 1989 , 39, 2780-2782	2.6	7
83	Quantification of Nonlinear Multiphase Flow in Porous Media. <i>Geophysical Research Letters</i> , 2021 , 48, e2020GL090477	4.9	7
82	Calibration of astigmatic particle tracking velocimetry based on generalized Gaussian feature extraction. <i>Advances in Water Resources</i> , 2019 , 124, 1-8	4.7	7
81	Pore-scale Imaging and Characterization of Hydrocarbon Reservoir Rock Wettability at Subsurface Conditions Using X-ray Microtomography. <i>Journal of Visualized Experiments</i> , 2018 ,	1.6	7
80	Towards Predicting Multi-Phase Flow in Porous Media Using Digital Rock Physics: Workflow to Test the Predictive Capability of Pore-Scale Modeling 2015 ,		6
79	Predictive Pore-Scale Modeling of Single and Multiphase Flow 2005 , 23-41		6
78	Model-free classification of X-ray scattering signals applied to image segmentation. <i>Journal of Applied Crystallography</i> , 2018 , 51, 1378-1386	3.8	6
77	A New Waterflood Initialization Protocol With Wettability Alteration for Pore-Scale Multiphase Flow Experiments. <i>Petrophysics</i> , 2019 , 60, 264-272	2	6
76	Direct Numerical Simulation of Pore-Scale Trapping Events During Capillary-Dominated Two-Phase Flow in Porous Media. <i>Transport in Porous Media</i> , 2021 , 138, 443-458	3.1	6
75	Determination of contact angles for three-phase flow in porous media using an energy balance. <i>Journal of Colloid and Interface Science</i> , 2021 , 582, 283-290	9.3	6
74	Dynamics of screening in multifractal growth. <i>Physical Review A</i> , 1990 , 41, 582-589	2.6	5
73	Real-Time Imaging Reveals Distinct Pore-Scale Dynamics During Transient and Equilibrium Subsurface Multiphase Flow. <i>Water Resources Research</i> , 2020 , 56, e2020WR028287	5.4	5

72	Liquid Pressure Determination in Polymer Electrolyte Fuel Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 34003-34011	9.5	5
71	Pore-scale imaging of asphaltene-induced pore clogging in carbonate rocks. <i>Fuel</i> , 2021 , 283, 118871	7.1	5
70	Pore-scale analysis of formation damage; A review of existing digital and analytical approaches. <i>Advances in Colloid and Interface Science</i> , 2021 , 288, 102345	14.3	5
69	Wastewater filtration and re-use: an alternative water source for London. <i>Science of the Total Environment</i> , 2012 , 437, 173-84	10.2	4
68	Control of Numerical Dispersion in Simulations of Augmented Waterflooding 2010,		4
67	Advective transport in percolation clusters. <i>Physical Review E</i> , 2007 , 75, 011124	2.4	4
66	Measurement and Prediction of Effective Diffusivities through Spreading and Nonspreading Oils in Unsaturated Porous Media. <i>Environmental Science & Environmental Science & En</i>	10.3	4
65	Pore-Scale Modeling of Multiphase Flow in Fractures and Matrix/Fracture Transfer 1999 ,		4
64	Pore Level Modelling of Three Phase Flow in Porous Media 1995 , cp-107-00023		4
63	Hydrodynamic force distribution on a fractal cluster. <i>Physical Review A</i> , 1989 , 39, 5801-5806	2.6	4
62	Three-phase flow displacement dynamics and Haines jumps in a hydrophobic porous medium. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2020 , 476, 2020067	1 ^{2.4}	4
61	Deformation bands and their impact on fluid flow: Insights from geometrical modelling and multi-scale flow simulations in sandstones. <i>Journal of Structural Geology</i> , 2020 , 141, 104215	3	4
60	Three-Phase Flow Visualization and Characterization for a Mixed-Wet Carbonate Rock 2018,		4
59	Solutions to Equations for Multiphase Flow402-436		3
58	An Efficient Optimisation Technique Using Adaptive Spectral High-Dimensional Model Representation: Application to CO2 Sequestration Strategies 2015 ,		3
57	Multispecies Reactive Transport in a Microporous Rock: Impact of Flow Heterogeneity and Reversibility of Reaction. <i>Water Resources Research</i> , 2020 , 56, e2020WR027317	5.4	3
56	Early-Time 1D Analysis of Shale-Oil and -Gas Flow. SPE Journal, 2016, 21, 1254-1262	3.1	3
55	In situ Wettability Measurement in a Carbonate Reservoir Rock at High Temperature and Pressure 2017 ,		3

Reservoir Condition Pore Scale Imaging of the Capillary Trapping of CO2. *Energy Procedia*, **2014**, 63, 5427-54343

53	Reservoir-Condition Pore-Scale Imaging Of Supercritical Carbon Dioxide 2013 ,	3
52	Coreflood Measurements of CO2 Trapping 2011 ,	3
51	Capillary Trapping in Carbonate Rocks 2010 ,	3
50	A Streamline-Based Method for Assisted History Matching Applied to an Arabian Gulf Field 2003,	3
49	2D dynamic pore-scale network model of imbibition. <i>Developments in Water Science</i> , 2004 , 55, 71-82	3
48	Analysis of Imbibition in Mixed-Wet Rocks Using Pore-Scale Modeling 2004 ,	3
47	A family of exponents from a fractal model of viscous fingering and DLA. <i>Journal of Physics A</i> , 1987 , 20, 5961-5969	3
46	New type of pore-snap-off and displacement correlations in imbibition <i>Journal of Colloid and Interface Science</i> , 2022 , 609, 384-392	3
45	Influence of Micro-Computed Tomography Image Resolution on Petrophysical Properties 2013,	3
44	Calculating Three-Phase Relative Permeabilities Using Network Modeling 1996,	3
43	Chapter 8:An Introduction to Subsurface CO2 Storage. <i>RSC Energy and Environment Series</i> , 2019 , 238-2950.6	3
42	Advances in multiscale numerical and experimental approaches for multiphysics problems in porous media. <i>Advances in Geo-Energy Research</i> , 2021 , 5, 233-238	3
41	Poromechanical controls on spontaneous imbibition in earth materials. <i>Scientific Reports</i> , 2021 , 11, 3328 _{4.9}	3
40	Imbibition and Trapping115-187	2
39	iSCAL for Complete Rock Characterization: Using Pore-Scale Imaging to Determine Relative Permeability and Capillary Pressure 2019 ,	2
38	Dynamic Pore-scale Reservoir-condition Imaging of Reaction in Carbonates Using Synchrotron Fast Tomography. <i>Journal of Visualized Experiments</i> , 2017 ,	2
37	Design of Simultaneous Enhanced Oil Recovery and Carbon Dioxide Storage Applied to a Heavy Oil Field Offshore Trinidad 2011 ,	2

36	Optimizing Oil Recovery and Carbon Dioxide Storage in Heavy Oil Reservoirs 2010,		2
35	A New Streamline Method for Evaluating Uncertainty in Small-Scale, Two-Phase Flow Properties. <i>SPE Journal</i> , 2003 , 8, 32-40	3.1	2
34	Disconnected Gas Transport in Steady-State Three-Phase Flow. Water Resources Research, 2021 , 57, e2	203 5 14WF	R0 <u>3</u> 1147
33	A hybrid of statistical and conditional generative adversarial neural network approaches for reconstruction of 3D porous media (ST-CGAN). <i>Advances in Water Resources</i> , 2021 , 158, 104064	4.7	2
32	A salinity cut-off method to control numerical dispersion in low-salinity waterflooding simulation. Journal of Petroleum Science and Engineering, 2020 , 184, 106586	4.4	2
31	Residual CO2 Saturation Distributions in Rock Samples Measured by X-Ray CT381-388		2
30	Low Salinity Waterflooding: From Single Well Chemical Tracer Test Interpretation to Sector Model Forecast Scenarios 2016 ,		1
29	Generating a capillary saturation-height function to predict hydrocarbon saturation using artificial neural networks. <i>Petroleum Geoscience</i> , 2010 , 16, 77-85	1.9	1
28	Effects of CO2 Storage in Saline Aquifers on Groundwater Supplies 2010 ,		1
27	Pore-scale imaging of asphaltene deposition with permeability reduction and wettability alteration. <i>Fuel</i> , 2022 , 316, 123202	7.1	1
26	A continuous time random walk method to predict dissolution in porous media based on validation of experimental NMR data. <i>Advances in Water Resources</i> , 2021 , 149, 103847	4.7	1
25	The development of intermittent multiphase fluid flow pathways through a porous rock. <i>Advances in Water Resources</i> , 2021 , 150, 103868	4.7	1
24	Pore-by-Pore Modelling, Validation and Prediction of Waterflooding in Oil-Wet Rocks Using Dynamic Synchrotron Data. <i>Transport in Porous Media</i> , 2021 , 138, 285-308	3.1	1
23	Predictive Modeling of Relative Permeability Using a Generalized Equation of State. <i>SPE Journal</i> , 2021 , 26, 191-205	3.1	1
22	Dynamic fluid configurations in steady-state two-phase flow in Bentheimer sandstone. <i>Physical Review E</i> , 2021 , 103, 013110	2.4	1
21	Drainage Capillary Pressure Distribution and Fluid Displacement in a Heterogeneous Laminated Sandstone. <i>Geophysical Research Letters</i> , 2021 , 48, e2021GL093604	4.9	1
20	Quantitative determination of the threshold pressure for a discontinuous phase to pass through a constriction using microscale simulation. <i>International Journal of Multiphase Flow</i> , 2022 , 104107	3.6	1
19	Interfacial Curvature and Contact Angle1-16		О

18	Assessment of CO2 geological storage capacity of saline aquifers under the North Sea. <i>International Journal of Greenhouse Gas Control</i> , 2021 , 111, 103463	4.2	0
17	Generalized network modelling of two-phase flow in a water-wet and mixed-wet reservoir sandstone: Uncertainty and validation with experimental data. <i>Advances in Water Resources</i> , 2022 , 164, 104194	4.7	O
16	Experimental study of electrical heating to enhance oil production from oil-wet carbonate reservoirs. <i>Fuel</i> , 2022 , 324, 124559	7.1	0
15	Porous Media and Fluid Displacement17-72		
14	Primary Drainage73-114		
13	Wettability and Displacement Paths188-218		
12	Navier-Stokes Equations, Darcy's Law and Multiphase Flow219-314		
11	Relative Permeability315-353		
10	Three-Phase Flow354-401		
9	Appendix Exercises437-446		
8	Editorial for the January 2012 Issue of Transport in Porous Media. <i>Transport in Porous Media</i> , 2012 , 91, 3-3	3.1	
7	Rapid evaluation of the impact of heterogeneity on miscible gas injection. <i>Geological Society Special Publication</i> , 1995 , 84, 133-142	1.7	
6	Analytic Analysis for Oil Recovery During Counter-Current Imbibition in Strongly Water-Wet Systems 2005 , 173-189		
5	Preface: Special Issue in Honor of Harvey Scher® 80th Birthday. <i>Transport in Porous Media</i> , 2016 , 115, 209-214	3.1	
4	Local Capillary Pressure Estimation Based on Curvature of the Fluid Interface IValidation with Two-Phase Direct Numerical Simulations. <i>E3S Web of Conferences</i> , 2020 , 146, 04003	0.5	
3	Acknowledgement of Reviewers for 2020. <i>Transport in Porous Media</i> , 2021 , 137, 283-286	3.1	
2	Crossflow effects on low salinity displacement in stratified heterogeneity. <i>Journal of Petroleum Science and Engineering</i> , 2021 , 109565	4.4	
1	Flow in Porous Media in the Energy Transition. <i>Engineering</i> , 2021 ,	9.7	