Michael Wark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6570650/publications.pdf

Version: 2024-02-01

66343 106344 5,801 181 42 65 citations h-index g-index papers 185 185 185 7327 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Palladium Doped Porous Titania Photocatalysts: Impact of Mesoporous Order and Crystallinity. Chemistry of Materials, 2010, 22, 108-116.	6.7	203
2	Gold Nanoparticles on Mesoporous Interparticle Networks of Titanium Dioxide Nanocrystals for Enhanced Photonic Efficiencies. Journal of Physical Chemistry C, 2009, 113, 7429-7435.	3.1	193
3	Improving the Photocatalytic Performance of Mesoporous Titania Films by Modification with Gold Nanostructures. Chemistry of Materials, 2009, 21, 1645-1653.	6.7	170
4	Nonaqueous Synthesis of Uniform Indium Tin Oxide Nanocrystals and Their Electrical Conductivity in Dependence of the Tin Oxide Concentration. Chemistry of Materials, 2006, 18, 2848-2854.	6.7	157
5	Formation of hybrid ABX ₃ perovskite compounds for solar cell application: first-principles calculations of effective ionic radii and determination of tolerance factors. Dalton Transactions, 2017, 46, 3500-3509.	3.3	133
6	Graphitic carbon nitride synthesized by simple pyrolysis: role of precursor in photocatalytic hydrogen production. New Journal of Chemistry, 2019, 43, 6909-6920.	2.8	116
7	pH-Control of the Photocatalytic Degradation Mechanism of Rhodamine B over Pb ₃ Nb ₄ O ₁₃ . Journal of Physical Chemistry C, 2011, 115, 8014-8023.	3.1	115
8	Photoelectrochemical and theoretical investigations of spinel type ferrites (M _{<i>x</i>} Fe _{3â°'<i>x</i>} O ₄) for water splitting: a mini-review. Journal of Photonics for Energy, 2016, 7, 012009.	1.3	111
9	Perovskite-type LaFeO3: Photoelectrochemical Properties and Photocatalytic Degradation of Organic Pollutants Under Visible Light Irradiation. Catalysts, 2019, 9, 342.	3.5	110
10	Functionalized Mesoporous Silica Films as a Matrix for Anchoring Electrochemically Active Guests. Langmuir, 2005, 21, 11320-11329.	3.5	102
11	Photocatalytic activity of ZrO ₂ composites with graphitic carbon nitride for hydrogen production under visible light. New Journal of Chemistry, 2019, 43, 4455-4462.	2.8	101
12	Anchoring of Functional Dye Molecules in MCM-41 by Microwave-Assisted Hydrothermal Cocondensation. Angewandte Chemie - International Edition, 2000, 39, 160-163.	13.8	92
13	Research Update: Photoelectrochemical water splitting and photocatalytic hydrogen production using ferrites (MFe2O4) under visible light irradiation. APL Materials, 2015, 3, .	5.1	92
14	Ordered Functionalized Silica Materials with High Proton Conductivity. Chemistry of Materials, 2007, 19, 6401-6407.	6.7	90
15	Proton conductivity of sulfonic acid functionalised mesoporous materials. Microporous and Mesoporous Materials, 2007, 99, 190-196.	4.4	84
16	Reducibility of vanadium oxide species in MCM-41. Microporous and Mesoporous Materials, 1998, 22, 225-236.	4.4	81
17	Low-temperature route to metal titanate perovskite nanoparticles for photocatalytic applications. Applied Catalysis B: Environmental, 2015, 178, 20-28.	20.2	74
18	Photocatalytic activity of hydrophobized mesoporous thin films of TiO2. Microporous and Mesoporous Materials, 2005, 84, 247-253.	4.4	69

#	Article	IF	CITATIONS
19	Photochromism of spiropyran in molecular sieve voids: effects of host–guest interaction on isomer status, switching stability and reversibility. Journal of Materials Chemistry, 2001, 11, 2014-2021.	6.7	65
20	Platinum-filled oxidic nanotubes. Microporous and Mesoporous Materials, 1999, 31, 235-239.	4.4	64
21	Ion-Permselective pH-Switchable Mesoporous Silica Thin Layers. Chemistry of Materials, 2007, 19, 1640-1647.	6.7	62
22	Microwave-Assisted Synthesis of Perovskite SrSnO ₃ Nanocrystals in Ionic Liquids for Photocatalytic Applications. Inorganic Chemistry, 2017, 56, 6920-6932.	4.0	62
23	Photocatalytic activity of CoFe2O4/g-C3N4 nanocomposite toward degradation of different organic pollutants and their inactivity toward hydrogen production: The role of the conduction band position. FlatChem, 2022, 32, 100337.	5.6	62
24	Carbon blacks for the extension of the cycle life in flooded lead acid batteries forÂmicro-hybrid applications. Journal of Power Sources, 2013, 239, 483-489.	7.8	59
25	Stability of Pt Nanoparticles on Alternative Carbon Supports for Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2017, 164, F995-F1004.	2.9	59
26	Enhanced photocatalytic hydrogen generation from barium tantalate composites. Photochemical and Photobiological Sciences, 2013, 12, 671-677.	2.9	57
27	A comparative study into the photocatalytic properties of thin mesoporous layers of TiO2 with controlled mesoporosity. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 194, 181-188.	3.9	55
28	Solid state route for synthesis of YFeO3/g-C3N4 composites and its visible light activity for degradation of organic pollutants. Catalysis Today, 2018, 313, 47-54.	4.4	55
29	Nanoparticles of Mesoporous SO ₃ Hâ€Functionalized Siâ€MCMâ€41 with Superior Proton Conductivity. Small, 2009, 5, 854-859.	10.0	54
30	New proton conducting hybrid membranes for HT-PEMFC systems based on polysiloxanes and SO3H-functionalized mesoporous Si-MCM-41 particles. Journal of Membrane Science, 2008, 316, 164-175.	8.2	53
31	Synthesis of Phase Pure Hexagonal YFeO3 Perovskite as Efficient Visible Light Active Photocatalyst. Catalysts, 2017, 7, 326.	3.5	53
32	Crystalline and permanently porous porphyrin-based metal tetraphosphonates. Chemical Communications, 2018, 54, 389-392.	4.1	52
33	Semiconductive microporous hydrogen-bonded organophosphonic acid frameworks. Nature Communications, 2020, 11, 3180.	12.8	50
34	Toward developing accelerated stress tests for proton exchange membrane electrolyzers. Current Opinion in Electrochemistry, 2020, 21, 225-233.	4.8	50
35	Improved overall water splitting with barium tantalate mixed oxide composites. Chemical Science, 2014, 5, 3746-3752.	7.4	49
36	Three Series of Sulfoâ€Functionalized Mixedâ€Linker CAUâ€10 Analogues: Sorption Properties, Proton Conductivity, and Catalytic Activity. Chemistry - A European Journal, 2015, 21, 12517-12524.	3.3	49

#	Article	IF	CITATIONS
37	Carbon blacks for lead-acid batteries in micro-hybrid applications – Studied by transmission electron microscopy and Raman spectroscopy. Journal of Power Sources, 2013, 222, 554-560.	7.8	47
38	Photocatalytic hydrogen production with non-stoichiometric pyrochlore bismuth titanate. Catalysis Today, 2014, 225, 102-110.	4.4	47
39	Crystallization of Indium Tin Oxide Nanoparticles: From Cooperative Behavior to Individuality. Small, 2007, 3, 310-317.	10.0	45
40	Reduction Kinetics of Zeolite-Hosted Mono- and Polynuclear Titanium Oxide Species Followed by UV/Vis Diffuse Reflectance Spectroscopy:  Influence of Location and Coordination. Journal of Physical Chemistry B, 1998, 102, 1665-1671.	2.6	43
41	Proton conductivity of imidazole functionalized ordered mesoporous silica: Influence of type of anchorage, chain length and humidity. Microporous and Mesoporous Materials, 2009, 123, 21-29.	4.4	43
42	Discovery of Polyoxo-Noble-Metalate-Based Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 3385-3389.	13.7	43
43	Correlating Changes in Electron Lifetime and Mobility on Photocatalytic Activity at Network-Modified TiO ₂ Aerogels. Journal of Physical Chemistry C, 2015, 119, 17529-17538.	3.1	42
44	Machine learningâ€"based optimization for hydrogen purification performance of layered bed pressure swing adsorption. International Journal of Energy Research, 2020, 44, 4475-4492.	4.5	42
45	Growth and reactivity of zinc and cadmium oxide nano-particles in zeolites. Microporous Materials, 1997, 8, 241-253.	1.6	41
46	Control of Phase Coexistence in Calcium Tantalate Composite Photocatalysts for Highly Efficient Hydrogen Production. Chemistry of Materials, 2013, 25, 4739-4745.	6.7	41
47	Photoactive Zinc Ferrites Fabricated via Conventional CVD Approach. ACS Sustainable Chemistry and Engineering, 2017, 5, 2917-2926.	6.7	41
48	Visible light-induced degradation of antibiotic ciprofloxacin over Fe–N–TiO2 mesoporous photocatalyst with anatase/rutile/brookite nanocrystal mixture. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 391, 112371.	3.9	41
49	X-ray photoelectron/X-ray excited auger electron spectroscopic study of highly dispersed semiconductor CdS and CdO species in zeolites. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 3987.	1.7	39
50	Titanium Oxide Species in Molecular Sieves:Â Materials for the Optical Sensing of Reductive Gas Atmospheres. Chemistry of Materials, 2002, 14, 2458-2466.	6.7	38
51	Development of polyoxadiazole nanocomposites for high temperature polymer electrolyte membrane fuel cells. Journal of Membrane Science, 2008, 322, 406-415.	8.2	38
52	Metallorganic Routes to Nanoscale Iron and Titanium Oxide Particles Encapsulated in Mesoporous Alumina: Formation, Physical Properties, and Chemical Reactivity. Chemistry - A European Journal, 2000, 6, 4305-4321.	3.3	37
53	Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 26, 483-488.	2.4	37
54	Optical gas sensing by semiconductor nanoparticles or organic dye molecules hosted in the pores of mesoporous siliceous MCM-41. Physical Chemistry Chemical Physics, 2003, 5, 5188-5194.	2.8	37

#	Article	IF	CITATIONS
55	Low-Temperature Preparation of Crystalline Nanoporous TiO[sub 2] Films by Surfactant-Assisted Anodic Electrodeposition. Electrochemical and Solid-State Letters, 2006, 9, C93.	2.2	37
56	Multilayered ordered mesoporous platinum/titania composite films: does the photocatalytic activity benefit from the film thickness?. Journal of Materials Chemistry, 2011, 21, 7802.	6.7	37
57	Electrodeposition of zinc oxide on transparent conducting metal oxide nanofibers and its performance in dye sensitized solar cells. Electrochimica Acta, 2013, 90, 375-381.	5.2	37
58	Influence of Calcination Temperature on the Photoelectrochemical and Photocatalytic Properties of Porous TiO ₂ Films Electrodeposited from Ti(IV)-Alkoxide Solution. Journal of Physical Chemistry C, 2008, 112, 15122-15128.	3.1	36
59	Proton Conductivity of SO ₃ Hâ€Functionalized Benzene–Periodic Mesoporous Organosilica. Small, 2011, 7, 1086-1097.	10.0	36
60	Challenges in Automotive Fuel Cells Recycling. Recycling, 2016, 1, 343-364.	5.0	35
61	Sol–gel synthesis of defect-pyrochlore structured CsTaWO6 and the tribochemical influences on photocatalytic activity. RSC Advances, 2013, 3, 18908.	3.6	34
62	Electrochemical deposition of Fe ₂ O ₃ in the presence of organic additives: a route to enhanced photoactivity. RSC Advances, 2015, 5, 103512-103522.	3.6	34
63	Hydrothermal carbonization of biomass from landscape management – Influence of process parameters on soil properties of hydrochars. Journal of Environmental Management, 2016, 173, 72-78.	7.8	34
64	Cr ₂ O ₃ Nanoparticles on Ba ₅ Ta ₄ O ₁₅ as a Nobleâ€Metalâ€Free Oxygen Evolution Coâ€Catalyst for Photocatalytic Overall Water Splitting. ChemCatChem, 2016, 8, 153-156.	3.7	34
65	<i>In Situ</i> Synthesis of Co ₃ O ₄ /CoFe ₂ O ₄ Derived from a Metal–Organic Framework on Nickel Foam: High-Performance Electrocatalyst for Water Oxidation. ACS Applied Energy Materials, 2021, 4, 2951-2959.	5.1	34
66	Construction of SnO2/g-C3N4 composite photocatalyst with enhanced interfacial charge separation and high efficiency for hydrogen production and Rhodamine B degradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 638, 128288.	4.7	34
67	Tetragonal tungsten bronze-type nanorod photocatalysts with tunnel structures: Ta substitution for Nb and overall water splitting. Journal of Materials Chemistry A, 2014, 2, 8815-8822.	10.3	33
68	Green Synthesis of a New Alâ€MOF Based on the Aliphatic Linker Mesaconic Acid: Structure, Properties and In Situ Crystallisation Studies of Alâ€MILâ€68â€Mes. Chemistry - A European Journal, 2018, 24, 2173-2181.	3.3	33
69	Metal clusters in plasma polymer matrices Part II. Silver clusters. Physical Chemistry Chemical Physics, 1999, 1, 4447-4451.	2.8	31
70	Role of the Critical Micelle Concentration in the Electrochemical Deposition of Nanostructured ZnO Films under Utilization of Amphiphilic Molecules. Langmuir, 2006, 22, 9427-9430.	3.5	30
71	Durability of Electrocatalysts for ORR: Pt on Nanocomposite of Reduced Graphene Oxide with FTO versus Pt/C. Journal of the Electrochemical Society, 2018, 165, F3373-F3382.	2.9	30
72	Microwave-assisted preparation of uniform pure and dye-loaded AlPO4-5 crystals with different morphologies for use as microlaser systems. Journal of Materials Chemistry, 2001, 11, 1823-1827.	6.7	29

#	Article	IF	CITATIONS
73	Ion conductivity of nano-scaled Al-rich ZSM-5 synthesized in the pores of carbon black. Microporous and Mesoporous Materials, 2009, 120, 47-52.	4.4	29
74	Electrodeposited Prussian Blue in mesoporous TiO2 as electrochromic hybrid material. Microporous and Mesoporous Materials, 2012, 164, 67-70.	4.4	29
75	Detailed Simulation and Characterization of Highly Proton Conducting Sulfonic Acid Functionalized Mesoporous Materials under Dry and Humidified Conditions. Journal of Physical Chemistry C, 2009, 113, 19218-19227.	3.1	28
76	Highly proton conducting sulfonic acid functionalized mesoporous materials studied by impedance spectroscopy, MAS NMR spectroscopy and MAS PFG NMR diffusometry. Microporous and Mesoporous Materials, 2012, 156, 80-89.	4.4	28
77	Co-composted hydrochar substrates as growing media for horticultural crops. Scientia Horticulturae, 2019, 252, 96-103.	3.6	28
78	Redox behaviour of SnO2 nanoparticles encapsulated in the pores of zeolites towards reductive gas atmospheres studied by in situ diffuse reflectance UV/Vis and Mössbauer spectroscopy. Physical Chemistry Chemical Physics, 2001, 3, 1870-1876.	2.8	27
79	Proton transport in functionalised additives for PEM fuel cells: contributions from atomistic simulations. Chemical Society Reviews, 2012, 41, 5143.	38.1	27
80	Composite proton-conducting polymer membranes for clean hydrogen production with solar light in a simple photoelectrochemical compartment cell. International Journal of Hydrogen Energy, 2012, 37, 4012-4017.	7.1	27
81	Improved Photocatalytic Hydrogen Production by Structure Optimized Nonstoichiometric Y ₂ Ti ₂ O ₇ . ChemCatChem, 2012, 4, 1819-1827.	3.7	26
82	Phosphonic acid anchored ruthenium complexes for ZnO-based dye-sensitized solar cells. Dyes and Pigments, 2014, 104, 24-33.	3.7	26
83	Understanding the Influence of Lattice Composition on the Photocatalytic Activity of Defectâ€Pyrochloreâ€Structured Semiconductor Mixed Oxides. Advanced Functional Materials, 2015, 25, 905-912.	14.9	26
84	Pore size and surface charge control in mesoporous TiO2 using post-grafted SAMs. Physical Chemistry Chemical Physics, 2010, 12, 1473.	2.8	25
85	Improved charge carrier separation in barium tantalate composites investigated by laser flash photolysis. Physical Chemistry Chemical Physics, 2016, 18, 10719-10726.	2.8	25
86	A low-cost procedure for the preparation of mesoporous layers of TiO2 efficient in the environmental clean-up. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, 126-132.	3.9	24
87	Bimodal mesoporous titanium dioxide anatase films templated by a block polymer and an ionic liquid: influence of the porosity on the permeability. Nanoscale, 2013, 5, 12316.	5.6	24
88	Photoelectrochemistry of Ferrites: Theoretical Predictions vs. Experimental Results. Zeitschrift Fur Physikalische Chemie, 2020, 234, 719-776.	2.8	24
89	Discovery and Supramolecular Interactions of Neutral Palladiumâ€Oxo Clusters Pd ₁₆ and Pd ₂₄ . Angewandte Chemie - International Edition, 2021, 60, 3632-3639.	13.8	24
90	Layered cesium copper titanate for photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2018, 227, 349-355.	20.2	23

#	Article	IF	CITATIONS
91	Scale-Up of the Electrodeposition of ZnO/Eosin Y Hybrid Thin Films for the Fabrication of Flexible Dye-Sensitized Solar Cell Modules. Materials, 2018, 11, 232.	2.9	23
92	Zirconium doped mesoporous TiO2 multilayer thin films: Influence of the zirconium content on the photodegradation of organic pollutants. Catalysis Today, 2019, 328, 71-78.	4.4	23
93	Polyoxopalladate-Loaded Metal–Organic Framework (POP@MOF): Synthesis and Heterogeneous Catalysis. Inorganic Chemistry, 2020, 59, 10512-10521.	4.0	23
94	Detection of Homogeneous Distribution of Functional Groups in Mesoporous Silica by Small Angle Neutron Scattering and in Situ Adsorption of Nitrogen or Water. Langmuir, 2011, 27, 5516-5522.	3.5	21
95	High-throughput microwave-assisted discovery of new metal phosphonates. Dalton Transactions, 2013, 42, 8761.	3.3	20
96	Hydrothermal Carbonizationâ€Derived Carbon from Waste Biomass as Renewable Pt Support for Fuel Cell Applications: Role of Carbon Activation. Energy Technology, 2019, 7, 1900344.	3.8	20
97	Metal clusters in plasma polymer matrices. Part III. Optical properties and redox behaviour of Cu clusters. Physical Chemistry Chemical Physics, 2000, 2, 3105-3110.	2.8	19
98	Excellent photocatalytic reduction of nitroarenes to aminoarenes by BiVO ₄ nanoparticles grafted on reduced graphene oxide (rGO/BiVO ₄). Applied Organometallic Chemistry, 2019, 33, e5059.	3.5	19
99	Highly porous TiO2 films from anodically deposited titanate hybrids and their photoelectrochemical and photocatalytic activity. Microporous and Mesoporous Materials, 2008, 111, 55-61.	4.4	18
100	CNT-TiO2â^î Composites for Improved Co-Catalyst Dispersion and Stabilized Photocatalytic Hydrogen Production. Catalysts, 2015, 5, 270-285.	3.5	18
101	Cadmium ion exchange in zeolite Y by chemical vapour deposition and reaction. Journal of Materials Chemistry, 1997, 7, 1429-1432.	6.7	17
102	A carbon nanotube-based transparent conductive substrate for flexible ZnO dye-sensitized solar cells. Thin Solid Films, 2013, 531, 391-397.	1.8	16
103	Photocatalytic degradation of the herbicide chloridazon on mesoporous titania/zirconia nanopowders. Environmental Science and Pollution Research, 2018, 25, 34873-34883.	5.3	16
104	Discovery of a Neutral 40-Pd ^{II} -Oxo Molecular Disk, [Pd ₄₀ O ₂₄ (OH) ₁₆ {(CH ₃) ₂ AsO ₂ }< Synthesis, Structural Characterization, and Catalytic Studies. Inorganic Chemistry, 2021, 60, 17339-17347.	syb>16 </td <td>sub>]:</td>	sub>]:
105	Homogeneously distributed CdS and CdSe nanoparticles in thin films of mesoporous silica. Thin Solid Films, 2004, 458, 20-25.	1.8	15
106	Illumination-induced properties of highly ordered mesoporous TiO2 layers with controlled crystallinity. Thin Solid Films, 2007, 515, 6541-6543.	1.8	15
107	Electrode layers for electrochemical applications based on functionalized mesoporous silica films. Sensors and Actuators B: Chemical, 2007, 126, 78-81.	7.8	15
108	Passive Mischelemente zur Elektrolytkonvektion in Blei-Säre-Nassbatterien. Chemie-Ingenieur-Technik, 2011, 83, 2051-2058.	0.8	15

#	Article	IF	CITATIONS
109	Micro-spectroscopy of HKUST-1 metal–organic framework crystals loaded with tetracyanoquinodimethane: effects of water on host–guest chemistry and electrical conductivity. Physical Chemistry Chemical Physics, 2019, 21, 25678-25689.	2.8	15
110	Incorporation of Activated Biomasses in Fe-N-C Catalysts for Oxygen Reduction Reaction with Enhanced Stability in Acidic Media. ACS Applied Energy Materials, 2021, 4, 6912-6922.	5.1	15
111	SiO2 nanotubes with nanodispersed Pt in the walls. Microporous and Mesoporous Materials, 2007, 99, 30-36.	4.4	14
112	Efficiency improvement of dye-sensitized solar cells based on electrodeposited TiO2 films by low temperature post-treatment. Electrochimica Acta, 2010, 55, 6352-6357.	5.2	14
113	Rational Development of Cobalt \hat{l}^2 -Ketoiminate Complexes: Alternative Precursors for Vapor-Phase Deposition of Spinel Cobalt Oxide Photoelectrodes. Inorganic Chemistry, 2018, 57, 5133-5144.	4.0	14
114	Microwave assisted synthesis of Ta2O5 nanostructures for photocatalytic hydrogen production. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 366, 41-47.	3.9	14
115	Analysis of the regeneration behavior of high temperature polymer electrolyte membrane fuel cells after hydrogen starvation. Journal of Power Sources, 2020, 449, 227562.	7.8	14
116	Morphology and Conductivity of Copper Hexacyanoferrate Films. Journal of Physical Chemistry C, 2020, 124, 16849-16859.	3.1	14
117	Tuning Coordination Geometry of Nickel Ketoiminates and Its Influence on Thermal Characteristics for Chemical Vapor Deposition of Nanostructured NiO Electrocatalysts. Inorganic Chemistry, 2020, 59, 10059-10070.	4.0	14
118	Mixed metal oxides as efficient electrocatalysts for water oxidation. International Journal of Hydrogen Energy, 2022, 47, 5250-5259.	7.1	14
119	Implementation of different Fe–N–C catalysts in high temperature proton exchange membrane fuel cells – Effect of catalyst and catalyst layer on performance. Journal of Power Sources, 2022, 537, 231529.	7.8	14
120	Covalent attachment of dye molecules to the inner surface of MCM-41. Studies in Surface Science and Catalysis, 2000, 129, 295-302.	1.5	13
121	Metal clusters in plasma polymer matrices. Physical Chemistry Chemical Physics, 2002, 4, 2438-2442.	2.8	13
122	Molecular and supramolecular templating of silicaâ€based nanotubes and introduction of metal nanowires. Physica Status Solidi (B): Basic Research, 2010, 247, 2401-2411.	1.5	13
123	Solid-state dye-sensitized ZnO solar cells prepared by low-temperature methods. Journal of Applied Electrochemistry, 2011, 41, 445-452.	2.9	13
124	Organic Cation Substitution in Hybrid Perovskite CH ₃ NH ₃ Pbl ₃ with Hydroxylammonium (NH ₃ OH ⁺): A First-Principles Study. Journal of Physical Chemistry C, 2018, 122, 3548-3557.	3.1	13
125	Photoactivity and scattering behavior of anodically and cathodically deposited hematite photoanodes – a comparison by scanning photoelectrochemical microscopy. Electrochimica Acta, 2016, 202, 224-230.	5.2	12
126	Proton Conduction in Sulfonated Organic–Inorganic Hybrid Monoliths with Hierarchical Pore Structure. ACS Applied Materials & Structure. ACS	8.0	12

#	Article	IF	CITATIONS
127	Combinatorial screening of photoanode materials - Uniform platform for compositional arrays and macroscopic electrodes. Electrochimica Acta, 2018, 259, 204-212.	5 . 2	12
128	Recent Progress in the Solution-Based Sequential Deposition of Planar Perovskite Solar Cells. Crystal Growth and Design, 2018, 18, 4790-4806.	3.0	12
129	Relevant Properties of Carbon Support Materials in Successful Fe-N-C Synthesis for the Oxygen Reduction Reaction: Study of Carbon Blacks and Biomass-Based Carbons. Materials, 2021, 14, 45.	2.9	12
130	Controlled Growth of Pt-Containing SiO2 Nanotubes with High Aspect Ratios. Chemistry of Materials, 2005, 17, 5928-5934.	6.7	11
131	Proton mobility in sulfonic acid functionalized mesoporous materials studied by MAS PFG NMR diffusometry and impedance spectroscopy. Microporous and Mesoporous Materials, 2018, 255, 140-147.	4.4	11
132	Characterization methodology for anode starvation in HT-PEM fuel cells. International Journal of Hydrogen Energy, 2019, 44, 18330-18339.	7.1	11
133	Elucidating Synergistic Effects of Different Metal Ratios in Bimetallic Fe/Co-N-C Catalysts for Oxygen Reduction Reaction. Catalysts, 2021, 11, 841.	3.5	10
134	The Power of Ionic Liquids: Crystal Facet Engineering of SrTiO ₃ Nanoparticles for Tailored Photocatalytic Applications. Advanced Sustainable Systems, 2021, 5, 2000180.	5.3	10
135	Anchorage of dye molecules and organic moieties to the inner surface of Si-MCM-41. Studies in Surface Science and Catalysis, 2002, 142, 1067-1074.	1.5	9
136	Ultra-long SiO2 and SiO2/TiO2 tubes embedded with Pt nanoparticles using magnus green salt as templating structures. Journal of Materials Science, 2010, 45, 1179-1188.	3.7	9
137	Investigation on the optimal oxidation agent for a maximum yield of sulfonic acid groups in MCM-41. Microporous and Mesoporous Materials, 2012, 151, 506-510.	4.4	9
138	Active Sites for Light Driven Proton Reduction in Y2Ti2O7 and CsTaWO6 Pyrochlore Catalysts Detected by In Situ EPR. Topics in Catalysis, 2015, 58, 769-775.	2.8	9
139	Discovery and Supramolecular Interactions of Neutral Palladiumâ€Oxo Clusters Pd 16 and Pd 24. Angewandte Chemie, 2021, 133, 3676-3683.	2.0	9
140	Reduction of platinum loading in gas diffusion electrodes for high temperature proton exchange membrane fuel cell application: Characterization and effect on oxygen reduction reaction performance. Journal of Power Sources, 2022, 529, 231276.	7.8	9
141	SnO2 nanoparticles in the pores of non-structured SiO2 and Si-MCM-41: Comparison of their properties in gas sensing. Studies in Surface Science and Catalysis, 2002, 141, 653-660.	1.5	8
142	Proton conductivity of ordered mesoporous materials containing aluminium. Journal of Power Sources, 2010, 195, 7781-7786.	7.8	8
143	Investigation of the pulsed electrochemical deposition of ZnO. Electrochimica Acta, 2012, 80, 60-67.	5.2	8
144	New insight into calcium tantalate nanocomposite photocatalysts for overall water splitting and reforming of alcohols and biomass derivatives. APL Materials, 2015, 3, 104412.	5.1	8

#	ARTICLE	IF	CITATIONS
145	Construction of strontium tantalate homo-semiconductor composite photocatalysts with a tunable type II junction structure for overall water splitting. Catalysis Science and Technology, 2018, 8, 3025-3033.	4.1	8
146	Photoelectrocatalytic behavior of electrodeposited zinc ferrite films with varying Zn:Fe ratio. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 362, 49-57.	3.9	8
147	The Effect of Donor Additives on the Stability and Structure of 5â€Diphenylphosphinoacenaphthâ€6â€yllithium. European Journal of Inorganic Chemistry, 2019, 2019, 712-720. Effects of Nonstoichiometry and Cocatalyst Loading on the Photocatalytic Hydrogen Production	2.0	8
148	with (<scp><scp>Y</scp></scp> 1.5 <scp><scp>Bi</scp></scp> 0.5) _{1â^'<i>x</i>} and (<scp><scp>YBi</scp></scp>	0.0	,
149	Pyrochlores. Journal of the American Ceramic Society, 2013, 96, 634-642. Impact of the Relative Humidity on the Performance Stability of Anion Exchange Membrane Fuel Cells Studied by Ion Chromatography. ACS Applied Polymer Materials, 2022, 4, 3962-3970.	4.4	7
150	Detection of nanodefects in the framework of NaY zeolite originating from the in situ synthesis of metal-free phthalocyanine. Microporous and Mesoporous Materials, 2002, 56, 131-138.	4.4	6
151	Self-integration of aligned cobalt nanoparticles into silica nanotubes. Applied Physics Letters, 2005, 87, 212503.	3.3	6
152	Distribution of functional groups in periodic mesoporous organosilica materials studied by small-angle neutron scattering with in situ adsorption of nitrogen. Beilstein Journal of Nanotechnology, 2012, 3, 428-437.	2.8	6
153	Theoretical and Experimental Study of Anatase Nanotube Formation via Sodium Titanate Intermediates. Journal of Physical Chemistry C, 2015, 119, 5048-5054.	3.1	6
154	Multi-Layered Mesoporous TiO2 Thin Films: Photoelectrodes with Improved Activity and Stability. Coatings, 2019, 9, 625.	2.6	6
155	Chemical Vapor Deposition of Cobalt and Nickel Ferrite Thin Films: Investigation of Structure and Pseudocapacitive Properties. Advanced Materials Interfaces, 2021, 8, 2100949.	3.7	6
156	Combinatorial Screening of Cu–W Oxide-Based Photoanodes for Photoelectrochemical Water Splitting. ACS Applied Materials & Samp; Interfaces, 2022, 14, 6590-6603.	8.0	6
157	Texture properties of nanoporous TiO2 films prepared by anodic electrodeposition using a structure-directing agent. Studies in Surface Science and Catalysis, 2007, 170, 1494-1501.	1.5	4
158	Microstructure and magnetic properties of tubular cobalt–silica nanocomposites. Journal of Magnetism and Magnetic Materials, 2007, 312, 405-409.	2.3	4
159	Influence of Coumarin 343 Monomer Codeposition on the Structure and Electronic Properties of Electrodeposited ZnO. Journal of Physical Chemistry C, 2012, 116, 5610-5613.	3.1	4
160	Limits of ZnO Electrodeposition in Mesoporous Tin Doped Indium Oxide Films in View of Application in Dye-Sensitized Solar Cells. Materials, 2014, 7, 3291-3304.	2.9	4
161	Rational fabrication of a graphitic-C ₃ N ₄ /Sr ₂ KNb ₅ O ₁₅ nanorod composite with enhanced visible-light photoactivity for degradation of methylene blue and hydrogen production. RSC Advances, 2017, 7, 42774-42782.	3.6	4
162	Semiconductor nanoparticles in the channels of mesoporous silica and titania thin films. Studies in Surface Science and Catalysis, 2002, 142, 1457-1464.	1.5	3

#	Article	IF	Citations
163	Functionalized mesoporous materials used as proton conductive additives for high temperature PEM fuel cell membranes. Studies in Surface Science and Catalysis, 2007, 170, 1540-1545.	1.5	3
164	Protonâ€Conducting Composite Membranes for Future Perspective Applications in Fuel Cells, Desalination Facilities and Photocatalysis. Chemie-Ingenieur-Technik, 2011, 83, 2177-2187.	0.8	3
165	Prediction of delamination state of 2D filler materials in cyclic olefin copolymer for enhanced barrier applications. Composite Structures, 2018, 202, 853-859.	5.8	3
166	Sequentially Deposited Compact and Pinhole-Free Perovskite Layers via Adjusting the Permittivity of the Conversion Solution. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2019, 74, 655-663.	1.5	3
167	Sol–gel chemistry in molten Brønsted acids towards "activated―carbons and beyond. Nanoscale, 2019, 11, 13154-13160.	5.6	3
168	Study of Polarization Characteristics of Corrosion Films on Magnesium in Sulfate-Containing Electrolytes. Applied Sciences (Switzerland), 2020, 10, 1406.	2.5	3
169	Investigation of Reduced Graphene Oxide with F-Doped SnO2as Catalyst Support in Fuel Cells. ECS Transactions, 2017, 80, 879-895.	0.5	2
170	Lithium Insertion into Mixed Phase Titania Nanotubes. Zeitschrift Fur Physikalische Chemie, 2017, 231, 1407-1421.	2.8	2
171	Nanoparticulate Dye-Semiconductor Hybrid Materials Formed by Electrochemical Self-Assembly as Electrodes in Photoelectrochemical Cells. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2009, 64, 518-530.	1.5	1
172	Reprint of "Photoelectrocatalytic behavior of electrodeposited zinc ferrite films with varying Zn:Fe ratio― Journal of Photochemistry and Photobiology A: Chemistry, 2018, 366, 18-26.	3.9	1
173	METAL SALTS AS STRUCTURE-DIRECTING AGENTS FOR SIO2 AND TIO2 NANOTUBES CONTAINING HIGH AMOUNTS OF ENCAPSULATED METAL. , 2002, , .		1
174	Enhanced Breaking of Lignin and Mesopore Formation in Zinc Chloride Assisted Hydrothermal Carbonization of Waste Biomasses. Journal of Carbon Research, 2021, 7, 77.	2.7	1
175	Low Temperature Preparation of Porous Crystalline TiO2 Films Using a Combination of Electrochemical and Electrophoretical Deposition. Journal of Advanced Oxidation Technologies, 2011, 14, .	0.5	0
176	Adsorption - wenn Ingenieure und Chemiker sich treffen …. Chemie-Ingenieur-Technik, 2016, 88, 223-223.	0.8	0
177	ELECTRODEPOSITION OF GOLD STRUCTURES IN MESOPOROUS TIO ₂ SOL-GEL FILMS., 2008, , .		0
178	Investigation of Liquid Additives on the Nano-Hardness of NiFe during Polishing. Tribology Online, 2011, 6, 113-116.	0.9	0
179	(Invited) Morphology and Conductivity of Copper Hexacyanoferrate Films. ECS Meeting Abstracts, 2020, MA2020-01, 2810-2810.	0.0	0
180	Proton Conductivity of Porous Zirconiumâ€Organic Frameworks Filled with Protic Ionic Liquid. Chemie-Ingenieur-Technik, 2022, 94, 128-134.	0.8	0

Article IF Citations

Discrete Arsonate-Grafted Inverted-Keggin 12-Molybdate Ion 181 [Mo₁₂O₃₂(OH)₂(4-N₃C₂H₂-C<sub4.6</sub>bd<sub>4 and Formation of a Copper(II)-Mediated Metal–Organic Framework. Inorganic Chemistry, 2022, , .