
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6570646/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Yield to the data: some perspective on crop productivity and pesticides. Pest Management Science, 2022, 78, 1765-1771.	3.4	9
2	Fate of thiamethoxam from treated seeds in mesocosms and response of aquatic invertebrate communities. Ecotoxicology, 2022, 31, 341-356.	2.4	1
3	Resilience of larval wood frogs (Rana sylvatica) to hydrocarbons and other compounds released from naturally weathered diluted bitumen in a boreal lake. Aquatic Toxicology, 2022, 245, 106128.	4.0	3
4	Chronic toxicity of technical atrazine to the fathead minnow (Pimephales promelas) during a full life-cycle exposure and an evaluation of the consistency of responses. Science of the Total Environment, 2021, 755, 142589.	8.0	15
5	Surfaceâ€Dwelling Aquatic Insects in Lowâ€Energy Freshwater Environments Are Highly Impacted by Oil Spills and the Surface Washing Agent Corexit EC9580A Used in Oil Spill Response. Environmental Toxicology and Chemistry, 2021, 40, 1298-1307.	4.3	11
6	Toxicity of Atrazine to Marine Invertebrates Under Flow-Through Conditions—Eastern Oyster (Crassostrea virginica) and Mysid Shrimp (Americamysis bahia). Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	9
7	The Press Sells Newspapers, We Should Not Sell Ecotoxicology. Environmental Toxicology and Chemistry, 2021, 40, 1239-1240.	4.3	5
8	On the impact of wastewater effluent on phytoplankton in the Arctic coastal zone: A case study in the Kitikmeot Sea of the Canadian Arctic. Science of the Total Environment, 2021, 764, 143861.	8.0	15
9	A Method to Screen for Consistency of Effect in Laboratory Toxicity Tests: A Case Study with Anurans and the Herbicide Atrazine. Archives of Environmental Contamination and Toxicology, 2021, 81, 123-132.	4.1	1
10	Crushed recycled glass as a substrate for constructed wetland wastewater treatment: a case study of its potential to facilitate pharmaceutical removal. Environmental Science and Pollution Research, 2021, 28, 52306-52318.	5.3	4
11	Acute and early life-stage toxicity of atrazine in sheepshead minnow (Cyprinodon variegatus). Ecotoxicology and Environmental Safety, 2021, 218, 112303.	6.0	10
12	Assessment of risks to listed species from the use of atrazine in the USA: a perspective. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2021, 24, 223-306.	6.5	18
13	Using zooplankton metabarcoding to assess the efficacy of different techniques to clean-up an oil-spill in a boreal lake. Aquatic Toxicology, 2021, 236, 105847.	4.0	2
14	Simulating diluted bitumen spills in boreal lake limnocorrals - part 2: Factors affecting the physical characteristics and submergence of diluted bitumen. Science of the Total Environment, 2021, 790, 148580.	8.0	18
15	Simulating diluted bitumen spills in boreal lake limnocorrals - Part 1: Experimental design and responses of hydrocarbons, metals, and water quality parameters. Science of the Total Environment, 2021, 790, 148537.	8.0	16
16	Taxonomic Chauvinism in Pesticide Ecotoxicology. Environmental Toxicology and Chemistry, 2021, 40, 3223-3225.	4.3	4
17	Surface oil is the primary driver of macroinvertebrate impacts following spills of diluted bitumen in freshwater. Environmental Pollution, 2021, 290, 117929.	7.5	7
18	Effect of spilled diluted bitumen on chemical air-water exchange in boreal lake limnocorrals. Chemosphere, 2021, , 132708.	8.2	0

#	Article	IF	CITATIONS
19	A Critical Review of the Availability, Reliability, and Ecological Relevance of Arctic Species Toxicity Tests for Use in Environmental Risk Assessment. Environmental Toxicology and Chemistry, 2021, , .	4.3	3
20	Wastewater sources of per- and polyfluorinated alkyl substances (PFAS) and pharmaceuticals in four Canadian Arctic communities. Science of the Total Environment, 2020, 708, 134494.	8.0	49
21	Context and Perspective in Ecotoxicology. Environmental Toxicology and Chemistry, 2020, 39, 1655-1655.	4.3	5
22	Life under an oil slick: response of a freshwater food web to simulated spills of diluted bitumen in field mesocosms. Canadian Journal of Fisheries and Aquatic Sciences, 2020, 77, 779-788.	1.4	18
23	A review of the effectiveness of vegetated buffers to mitigate pesticide and nutrient transport into surface waters from agricultural areas. Journal of Environmental Management, 2020, 261, 110210.	7.8	45
24	Phylogeny of the egg-loving green alga Oophila amblystomatis (Chlamydomonadales) and its response to the herbicides atrazine and 2,4-D. Symbiosis, 2019, 77, 23-39.	2.3	10
25	Simulating a Spill of Diluted Bitumen: Environmental Weathering and Submergence in a Model Freshwater System. Environmental Toxicology and Chemistry, 2019, 38, 2621-2628.	4.3	28
26	Strength of methods assessment for aquatic primary producer toxicity data: A critical review of atrazine studies from the peer-reviewed literature. Science of the Total Environment, 2019, 685, 1221-1239.	8.0	11
27	Improving environmental risk assessments of chemicals: Steps towards evidence-based ecotoxicology. Environment International, 2019, 128, 210-217.	10.0	24
28	The role of vegetated buffers in agriculture and their regulation across Canada and the United States. Journal of Environmental Management, 2019, 243, 12-21.	7.8	33
29	Effects of atrazine on fish, amphibians, and reptiles: update of the analysis based on quantitative weight of evidence. Critical Reviews in Toxicology, 2019, 49, 670-709.	3.9	24
30	Evidence of citation bias in the pesticide ecotoxicology literature. Ecotoxicology, 2018, 27, 1039-1045.	2.4	16
31	Extended fish short term reproduction assays with the fathead minnow and Japanese medaka: No evidence of impaired fecundity from exposure to atrazine. Chemosphere, 2018, 205, 126-136.	8.2	9
32	An evaluation of the social dimensions in public participation in rural domestic waste source-separated collection in Guilin, China. Environmental Monitoring and Assessment, 2018, 190, 35.	2.7	11
33	Pharmaceuticals and pesticides archived on polar passive sampling devices can be stable for up to 6 years. Environmental Toxicology and Chemistry, 2018, 37, 762-767.	4.3	27
34	An analysis of influencing factors on municipal solid waste source-separated collection behavior in Guilin, China by Using the Theory of Planned Behavior. Sustainable Cities and Society, 2018, 37, 336-343.	10.4	117
35	Response of the mayfly (<i>Cloeon dipterum</i>) to chronic exposure to thiamethoxam in outdoor mesocosms. Environmental Toxicology and Chemistry, 2018, 37, 1040-1050.	4.3	17
36	Field Evaluation and in Situ Stress Testing of the Organic-Diffusive Gradients in Thin-Films Passive Sampler. Environmental Science & Technology, 2018, 52, 12573-12582.	10.0	64

#	Article	IF	CITATIONS
37	Fate of thiamethoxam in mesocosms and response of the zooplankton community. Science of the Total Environment, 2018, 637-638, 1150-1157.	8.0	11
38	Attenuation of pharmaceuticals, nutrients and toxicity in a rural sewage lagoon system integrated with a subsurface filtration technology. Chemosphere, 2018, 209, 767-775.	8.2	13
39	A freshwater mesocosm study into the effects of the neonicotinoid insecticide thiamethoxam at multiple trophic levels. Environmental Pollution, 2018, 242, 1444-1457.	7.5	11
40	Inputs, source apportionment, and transboundary transport of pesticides and other polar organic contaminants along the lower Red River, Manitoba, Canada. Science of the Total Environment, 2018, 635, 803-816.	8.0	36
41	Public participation in municipal solid waste source-separated collection in Guilin, China: status and influencing factors. Journal of Environmental Planning and Management, 2017, 60, 2174-2191.	4.5	16
42	Comprehensive characterization of the acute and chronic toxicity of the neonicotinoid insecticide thiamethoxam to a suite of aquatic primary producers, invertebrates, and fish. Environmental Toxicology and Chemistry, 2017, 36, 2838-2848.	4.3	67
43	Microplastic contamination in Lake Winnipeg, Canada. Environmental Pollution, 2017, 225, 223-231.	7.5	306
44	How we can make ecotoxicology more valuable to environmental protection. Science of the Total Environment, 2017, 578, 228-235.	8.0	60
45	Aquatic hazard assessment of MON 0818, a commercial mixture of alkylamine ethoxylates commonly used in glyphosateâ€containing herbicide formulations. Part 2: Roles of sediment, temperature, and capacity for recovery following a pulsed exposure. Environmental Toxicology and Chemistry, 2017, 36, 512-521.	4.3	12
46	Aquatic hazard assessment of MON 0818, a commercial mixture of alkylamine ethoxylates commonly used in glyphosateâ€containing herbicide formulations. Part 1: Species sensitivity distribution from laboratory acute exposures. Environmental Toxicology and Chemistry, 2017, 36, 501-511.	4.3	19
47	As We Were Saying…. Toxicological Sciences, 2016, 154, kfw201.	3.1	0
48	Influence of light, nutrients, and temperature on the toxicity of atrazine to the algal species Raphidocelis subcapitata: Implications for the risk assessment of herbicides. Ecotoxicology and Environmental Safety, 2016, 132, 250-259.	6.0	28
49	Late season pharmaceutical fate in wetland mesocosms with and without phosphorous addition. Environmental Science and Pollution Research, 2016, 23, 22678-22690.	5.3	3
50	Does GLP enhance the quality of toxicological evidence for regulatory decisions?: TABLE 1 Toxicological Sciences, 2016, 151, 206-213.	3.1	17
51	Indirect effects of herbicides on biota in terrestrial edge-of-field habitats: A critical review of the literature. Agriculture, Ecosystems and Environment, 2016, 232, 59-72.	5.3	43
52	The release of wastewater contaminants in the Arctic: A case study from Cambridge Bay, Nunavut, Canada. Environmental Pollution, 2016, 218, 542-550.	7.5	29
53	Development and Calibration of an Organic-Diffusive Gradients in Thin Films Aquatic Passive Sampler for a Diverse Suite of Polar Organic Contaminants. Analytical Chemistry, 2016, 88, 10583-10591.	6.5	139
54	Dissipation of a commercial mixture of polyoxyethylene amine surfactants in aquatic outdoor microcosms: Effect of water depth and sediment organic carbon. Science of the Total Environment, 2016, 550, 449-458.	8.0	16

#	Article	IF	CITATIONS
55	Effects of atrazine on egg masses of the yellow-spotted salamander (Ambystoma maculatum) and its endosymbiotic alga (Oophila amblystomatis). Environmental Pollution, 2015, 206, 324-331.	7.5	13
56	Selective serotonin reuptake inhibitors and βâ€blocker transformation products may not pose a significant risk of toxicity to aquatic organisms in wastewater effluentâ€dominated receiving waters. Integrated Environmental Assessment and Management, 2015, 11, 618-639.	2.9	14
57	Reducing nutrients, organic micropollutants, antibiotic resistance, and toxicity in rural wastewater effluent with subsurface filtration treatment technology. Ecological Engineering, 2015, 84, 375-385.	3.6	24
58	Growth Recovery of Lemna gibba and Lemna minor Following a 7-Day Exposure to the Herbicide Diuron. Bulletin of Environmental Contamination and Toxicology, 2015, 95, 150-156.	2.7	11
59	Assessing temporal and spatial variation in sensitivity of communities of periphyton sampled from agroecosystem to, and ability to recover from, atrazine exposure. Ecotoxicology and Environmental Safety, 2015, 118, 204-216.	6.0	15
60	Aquatic toxicology studies with macrophytes and algae should balance experimental pragmatism with environmental realism. Science of the Total Environment, 2015, 536, 406-407.	8.0	9
61	Performance of a Constructed Wetland in Grand Marais, Manitoba, Canada: Removal of Nutrients, Pharmaceuticals, and Antibiotic Resistance Genes from Municipal Wastewater. , 2015, , 235-269.		0
62	Effects of Atrazine in Fish, Amphibians, and Reptiles: An Analysis Based on Quantitative Weight of Evidence. Critical Reviews in Toxicology, 2014, 44, 1-66.	3.9	100
63	Optimization of culturing conditions for toxicity testing with the alga <i>Oophila</i> sp. (Chlorophyceae), an amphibian endosymbiont. Environmental Toxicology and Chemistry, 2014, 33, 2566-2575.	4.3	8
64	Response of the green alga <i>Oophila</i> sp., a salamander endosymbiont, to a PSIIâ€inhibitor under laboratory conditions. Environmental Toxicology and Chemistry, 2014, 33, 1858-1864.	4.3	10
65	Macrophytes may not contribute significantly to removal of nutrients, pharmaceuticals, and antibiotic resistance in model surface constructed wetlands. Science of the Total Environment, 2014, 482-483, 294-304.	8.0	66
66	Fathead minnow (<i>Pimephales promelas</i> Rafinesque) exposure to three novel brominated flame retardants in outdoor mesocosms: bioaccumulation and biotransformation. Environmental Toxicology and Chemistry, 2014, 33, 1148-1155.	4.3	23
67	A critical assessment of the photodegradation of pharmaceuticals in aquatic environments: defining our current understanding and identifying knowledge gaps. Environmental Sciences: Processes and Impacts, 2014, 16, 672.	3.5	112
68	Performance of a constructed wetland in Grand Marais, Manitoba, Canada: Removal of nutrients, pharmaceuticals, and antibiotic resistance genes from municipal wastewater. Chemistry Central Journal, 2013, 7, 54.	2.6	67
69	The influence of the Mackenzie River plume on distribution and diversity of marine larval fish assemblages on the Canadian Beaufort Shelf. Journal of Marine Systems, 2013, 127, 36-45.	2.1	15
70	ENVIRONMENTAL FATE OF THREE NOVEL BROMINATED FLAME RETARDANTS IN AQUATIC MESOCOSMS. Environmental Toxicology and Chemistry, 2013, 32, 1060-1068.	4.3	31
71	Interactions between atrazine and phosphorus in aquatic systems: Effects on phytoplankton and periphyton. Chemosphere, 2013, 90, 1069-1076.	8.2	16
72	Stability of pharmaceuticals and other polar organic compounds stored on polar organic chemical integrative samplers and solidâ€phase extraction cartridges. Environmental Toxicology and Chemistry, 2013, 32, 337-344.	4.3	46

#	Article	IF	CITATIONS
73	Presence and hazards of nutrients and emerging organic micropollutants from sewage lagoon discharges into Dead Horse Creek, Manitoba, Canada. Science of the Total Environment, 2013, 445-446, 64-78.	8.0	70
74	Aquatic photochemistry of the sulfonamide antibiotic sulfapyridine. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 262, 14-21.	3.9	52
75	Sensitivity of a green alga to atrazine is not enhanced by previous acute exposure. Environmental Pollution, 2013, 181, 325-328.	7.5	17
76	Assessing sensitivity and recovery of field-collected periphyton acutely exposed to atrazine using PSII inhibition under laboratory conditions. Ecotoxicology, 2013, 22, 1367-1383.	2.4	19
77	Synergy between prochloraz and esfenvalerate in Daphnia magna from acute and subchronic exposures in the laboratory and microcosms. Aquatic Toxicology, 2012, 110-111, 17-24.	4.0	43
78	Synergy in microcosms with environmentally realistic concentrations of prochloraz and esfenvalerate. Aquatic Toxicology, 2011, 101, 412-422.	4.0	43
79	Atrazine does not affect algal biomass or snail populations in microcosm communities at environmentally relevant concentrations. Environmental Toxicology and Chemistry, 2011, 30, 1689-1696.	4.3	27
80	AMEG: the new SETAC advisory group on aquatic macrophyte ecotoxicology. Environmental Science and Pollution Research, 2010, 17, 820-823.	5.3	20
81	Selenium concentration, speciation and behavior in surface waters of the Canadian prairies. Science of the Total Environment, 2009, 407, 5869-5876.	8.0	26
82	Duckweed Toxicity Tests ARE Appropriate For ERA. Integrated Environmental Assessment and Management, 2009, 5, 350.	2.9	10
83	Is ambient chitobiase activity a monitoring tool forÂimpacts on secondary production in lotic systems?. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66, 1274-1281.	1.4	6
84	Zooplankton Chitobiase Activity as an Endpoint of Pharmaceutical Effect. Archives of Environmental Contamination and Toxicology, 2008, 54, 637-644.	4.1	18
85	Effects of planting system design on the toxicological sensitivity of Myriophyllum spicatum and Elodea canadensis to atrazine. Chemosphere, 2008, 73, 249-260.	8.2	25
86	Aquatic Plants Exposed to Pharmaceuticals: Effects and Risks. Reviews of Environmental Contamination and Toxicology, 2008, 192, 67-115.	1.3	116
87	Indirect Evidence of Transposon-Mediated Selection of Antibiotic Resistance Genes in Aquatic Systems at Low-Level Oxytetracycline Exposures. Environmental Science & Technology, 2008, 42, 5348-5353.	10.0	111
88	Improving regulatory risk assessment— using aquatic macrophytes. Integrated Environmental Assessment and Management, 2007, 3, 466-467.	2.9	9
89	Influence of isolation on the recovery of pond mesocosms from the application of an insecticide. I. Study design and planktonic community responses. Environmental Toxicology and Chemistry, 2007, 26, 1265-1279.	4.3	49
90	Influence of isolation on the recovery of pond mesocosms from the application of an insecticide. II. Benthic macroinvertebrate responses. Environmental Toxicology and Chemistry, 2007, 26, 1280-1290.	4.3	76

#	Article	IF	CITATIONS
91	Monensin Is Not Toxic to Aquatic Macrophytes at Environmentally Relevant Concentrations. Archives of Environmental Contamination and Toxicology, 2007, 53, 541-551.	4.1	32
92	Field assessment of oxytetracycline exposure to the freshwater macrophytes Egeria densa Planch. and Ceratophyllum demersum L Environmental Pollution, 2006, 141, 434-442.	7.5	21
93	Microcosm Evaluation of the Toxicity and Risk to Aquatic Macrophytes from Perfluorooctane Sulfonic Acid. Archives of Environmental Contamination and Toxicology, 2005, 48, 329-337.	4.1	26
94	Microcosm Evaluation of the Fate, Toxicity, and Risk to Aquatic Macrophytes from Perfluorooctanoic Acid (PFOA). Archives of Environmental Contamination and Toxicology, 2005, 49, 307-316.	4.1	23
95	Response of water column microbial communities to sudden exposure to deltamethrin in aquatic mesocosms. FEMS Microbiology Ecology, 2005, 54, 157-165.	2.7	21
96	Chitobiase activity as an indicator of aquatic ecosystem health. Aquatic Ecosystem Health and Management, 2005, 8, 441-450.	0.6	19
97	Aquatic microcosm assessment of the effects of tylosin on Lemna gibba and Myriophyllum spicatum. Environmental Pollution, 2005, 133, 389-401.	7.5	29
98	Effects of a mixture of tetracyclines to Lemna gibba and Myriophyllum sibiricum evaluated in aquatic microcosms. Environmental Pollution, 2005, 138, 425-442.	7.5	56
99	Haloacetic acids in the aquatic environment. Part I: macrophyte toxicity. Environmental Pollution, 2004, 130, 371-383.	7.5	45
100	Haloacetic acids in the aquatic environment. Part II: ecological risk assessment. Environmental Pollution, 2004, 130, 385-401.	7.5	43
101	Microcosm evaluation of the effects of an eight pharmaceutical mixture to the aquatic macrophytes Lemna gibba and Myriophyllum sibiricum. Aquatic Toxicology, 2004, 70, 23-40.	4.0	146
102	Variation, replication, and power analysis of <i>Myriophyllum</i> spp. microcosm toxicity data. Environmental Toxicology and Chemistry, 2003, 22, 1318-1329.	4.3	36
103	Field level evaluation and risk assessment of the toxicity of dichloroacetic acid to the aquatic macrophytes Lemna gibba, Myriophyllum spicatum, and Myriophyllum sibiricum. Ecotoxicology and Environmental Safety, 2003, 55, 46-63.	6.0	19
104	VARIATION, REPLICATION, AND POWER ANALYSIS OF MYRIOPHYLLUM SPP. MICROCOSM TOXICITY DATA. Environmental Toxicology and Chemistry, 2003, 22, 1318.	4.3	8
105	New Technique for Estimating Thresholds of Toxicity in Ecological Risk Assessment. Environmental Science & Technology, 2002, 36, 3257-3264.	10.0	67
106	Trichloroacetic acid fate and toxicity to the macrophytes Myriophyllum spicatum and Myriophyllum sibiricum under field conditions. Aquatic Toxicology, 2002, 56, 241-255.	4.0	14
107	Evaluation of monochloroacetic acid (MCA) degradation and toxicity to Lemna gibba, Myriophyllum spicatum, and Myriophyllum sibiricum in aquatic microcosms. Aquatic Toxicology, 2002, 61, 251-273.	4.0	26
108	Trichloroacetic acid (TCA) and trifluoroacetic acid (TFA) mixture toxicity to the macrophytes Myriophyllum spicatum and Myriophyllum sibiricum in aquatic microcosms. Science of the Total Environment, 2002, 285, 247-259.	8.0	26

#	Article	IF	CITATIONS
109	The fate and persistence of trifluoroacetic and chloroacetic acids in pond waters. Chemosphere, 2001, 42, 309-318.	8.2	92
110	Chlorodifluoroacetic acid fate and toxicity to the macrophytes <i>Lemna gibba, Myriophyllum spicatum</i> , and <i>Myriophyllum sibiricum</i> in aquatic microcosms. Environmental Toxicology and Chemistry, 2001, 20, 2758-2767.	4.3	23
111	CHLORODIFLUOROACETIC ACID FATE AND TOXICITY TO THE MACROPHYTES LEMNA GIBBA, MYRIOPHYLLUM SPICATUM, AND MYRIOPHYLLUM SIBIRICUM IN AQUATIC MICROCOSMS. Environmental Toxicology and Chemistry, 2001, 20, 2758.	4.3	8
112	Detection of Chlorodifluoroacetic Acid in Precipitation:  A Possible Product of Fluorocarbon Degradation. Environmental Science & Technology, 2000, 34, 274-281.	10.0	44