
Nicolai Mirlean

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6570570/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal contamination of vineyard soils in wet subtropics (southern Brazil). Environmental Pollution, 2007, 149, 10-17.	7.5	157
2	The effect of emissions of fertilizer production on the environment contamination by cadmium and arsenic in southern Brazil. Environmental Pollution, 2006, 143, 335-340.	7.5	72
3	Arsenic speciation in fish and shellfish from the North Sea (Southern bight) and Açu Port area (Brazil) and health risks related to seafood consumption. Chemosphere, 2018, 191, 89-96.	8.2	63
4	Mercury pollution sources in sediments of Patos Lagoon Estuary, Southern Brazil. Marine Pollution Bulletin, 2003, 46, 331-334.	5.0	61
5	Arsenic pollution in Patos Lagoon estuarine sediments, Brazil. Marine Pollution Bulletin, 2003, 46, 1480-1484.	5.0	57
6	Arsenic enrichment in sediments and beaches of Brazilian coastal waters: A review. Science of the Total Environment, 2019, 681, 143-154.	8.0	50
7	Arsenic enrichment in shelf and coastal sediment of the Brazilian subtropics. Continental Shelf Research, 2012, 35, 129-136.	1.8	41
8	Fluoride distribution in the environment along the gradient of a phosphate-fertilizer production emission (southern Brazil). Environmental Geochemistry and Health, 2007, 29, 179-187.	3.4	39
9	Mercury in lakes and lake fishes on a conservation-industry gradient in Brazil. Chemosphere, 2005, 60, 226-236.	8.2	38
10	Copper-Based Fungicide Contamination and Metal Distribution in Brazilian Grape Products. Bulletin of Environmental Contamination and Toxicology, 2005, 75, 968-974.	2.7	37
11	Vanadium removal from aqueous solutions by adsorption onto chitosan films. Desalination and Water Treatment, 2016, 57, 16583-16591.	1.0	33
12	Mercury Contamination of Soil as the Result of Long-Term Phosphate Fertilizer Production. Bulletin of Environmental Contamination and Toxicology, 2008, 81, 305-308.	2.7	29
13	Assessment of polycyclic aromatic hydrocarbon influx and sediment contamination in an urbanized estuary. Environmental Monitoring and Assessment, 2010, 168, 269-276.	2.7	29
14	Calcareous algae bioclast contribution to sediment enrichment by arsenic on the Brazilian subtropical coast. Geo-Marine Letters, 2011, 31, 65-73.	1.1	29
15	Mercury in freshwater, estuarine, and marine fishes from Southern Brazil and its ecological implication. Environmental Monitoring and Assessment, 2009, 159, 35-42.	2.7	27
16	Arsenic in groundwater of the Paraiba do Sul delta, Brazil: An atmospheric source?. Science of the Total Environment, 2014, 482-483, 148-156.	8.0	27
17	Selenium deficiency in subtropical littoral pampas: environmental and dietary aspects. Environmental Geochemistry and Health, 2018, 40, 543-556.	3.4	26
18	Identification of local sources of lead in atmospheric deposits in an urban area in Southern Brazil using stable lead isotope ratios. Atmospheric Environment, 2005, 39, 6204-6212.	4.1	25

NICOLAI MIRLEAN

#	Article	IF	CITATIONS
19	Arsenic and Mercury Contamination of Sediments of Geothermal Springs, Mangrove Lagoon and the Santispac Bight, BahÃa Concepción, Baja California Peninsula. Bulletin of Environmental Contamination and Toxicology, 2010, 85, 609-613.	2.7	24
20	Copper Bioavailability and Fractionation in Copper-Contaminated Sandy Soils in the Wet Subtropics (Southern Brazil). Bulletin of Environmental Contamination and Toxicology, 2009, 82, 373-377.	2.7	23
21	The Effect of Accidental Sulphuric Acid Leaking on Metal Distributions in Estuarine Sediment of Patos Lagoon. Marine Pollution Bulletin, 2001, 42, 1114-1117.	5.0	22
22	Rare earth elements as tracers of sediment contamination by fertilizer industries in Southern Brazil, Patos Lagoon Estuary. Applied Geochemistry, 2021, 129, 104965.	3.0	22
23	Sandy beaches contamination by arsenic, a result of nearshore sediment diagenesis and transport (Brazilian coastline). Estuarine, Coastal and Shelf Science, 2013, 135, 241-247.	2.1	20
24	NÃveis e origem da acidificação das chuvas na região do Rio Grande, RS. Quimica Nova, 2000, 23, 590-593.	0.3	18
25	Mercury distributions in sediments of an estuary subject to anthropogenic hydrodynamic alterations (Patos Estuary, Southern Brazil). Environmental Monitoring and Assessment, 2020, 192, 266.	2.7	18
26	An assessment of the chemical composition of precipitation and throughfall in rural-industrial gradient in wet subtropics (southern Brazil). Environmental Monitoring and Assessment, 2008, 144, 105-116.	2.7	17
27	Urban activity and mercury contamination in estuarine and marine sediments (Southern Brazil). Environmental Monitoring and Assessment, 2009, 157, 583-589.	2.7	16
28	Mercury and selenium in the Brazilian subtropical marine products: Food composition and safety. Journal of Food Composition and Analysis, 2019, 84, 103310.	3.9	16
29	The impact of marine shallow-water hydrothermal venting on arsenic and mercury accumulation by seaweed Sargassum sinicola in Concepcion Bay, Gulf of California. Environmental Sciences: Processes and Impacts, 2013, 15, 470.	3.5	15
30	Distribution and Geochemistry of Arsenic in Sediments of the World's Largest Choked Estuary: the Patos Lagoon, Brazil. Estuaries and Coasts, 2019, 42, 1896-1911.	2.2	15
31	Intertidal geothermal hot springs as a source of trace elements to the coastal zone: A case study from BahAa Concepción, Gulf of California. Marine Pollution Bulletin, 2018, 128, 51-64.	5.0	13
32	Record of Hg pollution around outset of colonization in Southern Brazil. Environmental Monitoring and Assessment, 2019, 191, 256.	2.7	12
33	Arsenic Environmental Threshold Surpass in Estuarine Sediments: Effects of Bioturbation. Bulletin of Environmental Contamination and Toxicology, 2017, 98, 521-524.	2.7	11
34	Dredging in an estuary causes contamination by fluid mud on a tourist ocean beach. Evidence via REE ratios. Marine Pollution Bulletin, 2020, 159, 111495.	5.0	11
35	Propagação da poluição atmosférica por flúor nas águas subterrâneas e solos de regiões próximas / indústrias de fertilizantes (Rio Grande, RS). Quimica Nova, 2002, 25, 191-195.	Ăs 0.3	10
36	Temporal evolution of the contamination in the southern area of the Patos Lagoon estuary, RS, Brazil. Journal of Integrated Coastal Zone Management, 2016, 16, 263-279.	0.1	10

NICOLAI MIRLEAN

#	Article	IF	CITATIONS
37	Geochemical factors promoting die-back gap formation in colonizing patches of Spartina densiflora in an irregularly flooded marsh. Estuarine, Coastal and Shelf Science, 2017, 189, 104-114.	2.1	8
38	Rare earth element distributions in salt marsh sediment cores reveal evidence of environmental lability during bioturbation and diagenetic processes. Chemical Geology, 2021, 584, 120503.	3.3	8
39	Mercury Dispersal to Arroyo and Coastal Sediments from Abandoned Copper Mine Operations, El Boléo, Baja California. Bulletin of Environmental Contamination and Toxicology, 2009, 82, 20-25.	2.7	6
40	Increasing arsenic mobility in the fine fraction of the dry stream sediments of the semi-arid San Antonio gold mining district (Baja California peninsula, Mexico). Environmental Earth Sciences, 2015, 73, 4689-4700.	2.7	6
41	Coralline algae and arsenic fixation in near shore sediments. Regional Studies in Marine Science, 2016, 3, 83-88.	0.7	6
42	Groundwater Contamination by Mercury from the Aforetime Carroting Practice. Bulletin of Environmental Contamination and Toxicology, 2018, 100, 839-842.	2.7	6
43	Mercury bioaccumulation in fishes of a paddy field in Southern of Brazil. Acta Limnologica Brasiliensia, 2015, 27, 191-201.	0.4	3
44	Selenium Enrichment in Pore Water of Estuarine Sediments Subject to Salt Marsh Vegetation Bioirrigation (Patos Estuary, Southern Brazil). Bulletin of Environmental Contamination and Toxicology, 2020, 105, 468-473.	2.7	3
45	Mercury distribution in water masses of the South Atlantic Ocean (24°S to 20°S), Brazilian Exclusive Economic Zone. Marine Pollution Bulletin, 2022, 176, 113425.	5.0	3
46	Selenium Content in Freshwater and Marine Fish from Southern Brazil Coastal Plain: a Comparative Analysis on Environmental and Dietary Aspects. Biological Trace Element Research, 2022, , 1.	3.5	3
47	A simple technique for the automatic opening of a wet deposition collector. Journal of Environmental Monitoring, 2003, 5, 591.	2.1	1
48	Arsenic redistributive accretion in interdune marshes and its impact on groundwater contamination of coastal plains (southern Brazil). Environmental Earth Sciences, 2019, 78, 1.	2.7	1
49	Effects of Bioirrigation and Salinity on Arsenic Distributions in Ferruginous Concretions from Salt Marsh Sediment Cores (Southern Brazil). Aquatic Geochemistry, 2021, 27, 79-103.	1.3	1
50	Pattern of mercury distribution in sediments from an irregular hydrological regime estuary. Regional Studies in Marine Science, 2020, 39, 101458.	0.7	0
51	Reply to MPB-D-20-01629. Carlos Alberto Eiras Garcia Heitor Evangelista Osmar Olinto Möller Jr.Comments on "Dredging in an estuary causes contamination by fluid mud on a tourist oceanbeach. Evidence via REE ratios―by N. Mirlean, L. Calliari, and K. Johannesson in Marine Pollution Bulletin 159 (2020) 111495. https://doi.org/10.1016/i.marpolbul.2020.111495. Marine Pollution Bulletin. 2021, 165, 112161.	5.0	0
52	Palinomorfos esporopolÃnicos na plataforma continental interna sul do Rio Grande do Sul, Brasil. Revista Brasileira De Paleontologia, 2020, 23, 48-62.	0.4	0
53	Sulfate reduction and alterability of sulfur species in sediments of an estuary with irregular hydrological regime. Ocean and Coastal Research, 0, 68, .	0.6	0