Qingshan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6570512/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Taurine protects dopaminergic neurons in a mouse Parkinson's disease model through inhibition of microglial M1 polarization. Cell Death and Disease, 2018, 9, 435.	6.3	100
2	Post-treatment with an ultra-low dose of NADPH oxidase inhibitor diphenyleneiodonium attenuates disease progression in multiple Parkinson's disease models. Brain, 2015, 138, 1247-1262.	7.6	86
3	Inhibition of NADPH oxidase by apocynin prevents learning and memory deficits in a mouse Parkinson's disease model. Redox Biology, 2019, 22, 101134.	9.0	85
4	Microglial regulation of immunological and neuroprotective functions of astroglia. Glia, 2015, 63, 118-131.	4.9	84
5	NADPH oxidase regulates paraquat and maneb-induced dopaminergic neurodegeneration through ferroptosis. Toxicology, 2019, 417, 64-73.	4.2	80
6	Complement receptor 3 mediates NADPH oxidase activation and dopaminergic neurodegeneration through a Src-Erk-dependent pathway. Redox Biology, 2018, 14, 250-260.	9.0	72
7	Substance P Exacerbates Dopaminergic Neurodegeneration through Neurokinin-1 Receptor-Independent Activation of Microglial NADPH Oxidase. Journal of Neuroscience, 2014, 34, 12490-12503.	3.6	70
8	Microglial activation contributes to cognitive impairments in rotenone-induced mouse Parkinson's disease model. Journal of Neuroinflammation, 2021, 18, 4.	7.2	70
9	Integrin CD11b mediates α-synuclein-induced activation of NADPH oxidase through a Rho-dependent pathway. Redox Biology, 2018, 14, 600-608.	9.0	69
10	Endogenous dynorphin protects against neurotoxin-elicited nigrostriatal dopaminergic neuron damage and motor deficits in mice. Journal of Neuroinflammation, 2012, 9, 124.	7.2	65
11	Naloxone inhibits immune cell function by suppressing superoxide production through a direct interaction with gp91 phox subunit of NADPH oxidase. Journal of Neuroinflammation, 2012, 9, 32.	7.2	56
12	NADPH oxidase-derived H2O2 mediates the regulatory effects of microglia on astrogliosis in experimental models of Parkinson's disease. Redox Biology, 2017, 12, 162-170.	9.0	54
13	A novel role of microglial <scp>NADPH</scp> oxidase in mediating extraâ€synaptic function of norepinephrine in regulating brain immune homeostasis. Glia, 2015, 63, 1057-1072.	4.9	53
14	Loss of Brain Norepinephrine Elicits Neuroinflammation-Mediated Oxidative Injury and Selective Caudo-Rostral Neurodegeneration. Molecular Neurobiology, 2019, 56, 2653-2669.	4.0	50
15	Hypertension and Diagnosis of Parkinson's Disease: A Meta-Analysis of Cohort Studies. Frontiers in Neurology, 2018, 9, 162.	2.4	48
16	Subpicomolar diphenyleneiodonium inhibits microglial NADPH oxidase with high specificity and shows great potential as a therapeutic agent for neurodegenerative diseases. Glia, 2014, 62, 2034-2043.	4.9	46
17	Taurine protects noradrenergic locus coeruleus neurons in a mouse Parkinson's disease model by inhibiting microglial M1 polarization. Amino Acids, 2018, 50, 547-556.	2.7	43
18	Clozapine metabolites protect dopaminergic neurons through inhibition of microglial NADPH oxidase. Journal of Neuroinflammation, 2016, 13, 110.	7.2	42

QINGSHAN WANG

#	Article	IF	CITATIONS
19	Paraquat and maneb co-exposure induces noradrenergic locus coeruleus neurodegeneration through NADPH oxidase-mediated microglial activation. Toxicology, 2017, 380, 1-10.	4.2	40
20	Noradrenergic dysfunction accelerates LPS-elicited inflammation-related ascending sequential neurodegeneration and deficits in non-motor/motor functions. Brain, Behavior, and Immunity, 2019, 81, 374-387.	4.1	36
21	Lesion of the Locus Coeruleus Damages Learning and Memory Performance in Paraquat and Maneb-induced Mouse Parkinson's Disease Model. Neuroscience, 2019, 419, 129-140.	2.3	33
22	Locus coeruleus neurons are most sensitive to chronic neuroinflammation-induced neurodegeneration. Brain, Behavior, and Immunity, 2020, 87, 359-368.	4.1	33
23	Neurons and astroglia govern microglial endotoxin tolerance through macrophage colony-stimulating factor receptor-mediated ERK1/2 signals. Brain, Behavior, and Immunity, 2016, 55, 260-272.	4.1	31
24	PGE2 Inhibits IL-10 Production via EP2-Mediated β-Arrestin Signaling in Neuroinflammatory Condition. Molecular Neurobiology, 2015, 52, 587-600.	4.0	24
25	Rotenone impairs learning and memory in mice through microglia-mediated blood brain barrier disruption and neuronal apoptosis. Chemosphere, 2022, 291, 132982.	8.2	24
26	Microglial Activation Damages Dopaminergic Neurons through MMP-2/-9-Mediated Increase of Blood-Brain Barrier Permeability in a Parkinson's Disease Mouse Model. International Journal of Molecular Sciences, 2022, 23, 2793.	4.1	24
27	2,5-Hexanedione induces dopaminergic neurodegeneration through integrin αMβ2/NADPH oxidase axis-mediated microglial activation. Cell Death and Disease, 2018, 9, 60.	6.3	23
28	Integrin CD11b mediates locus coeruleus noradrenergic neurodegeneration in a mouse Parkinson's disease model. Journal of Neuroinflammation, 2020, 17, 148.	7.2	23
29	Nicotinamide Adenine Dinucleotide Phosphate Oxidase and Neurodegenerative Diseases: Mechanisms and Therapy. Antioxidants and Redox Signaling, 2020, 33, 374-393.	5.4	22
30	Substance P enhances microglial density in the substantia nigra through neurokinin-1 receptor/NADPH oxidase-mediated chemotaxis in mice. Clinical Science, 2015, 129, 757-767.	4.3	21
31	Bone marrow mesenchymal stem cells attenuate 2,5-hexanedione-induced neuronal apoptosis through a NGF/AKT-dependent pathway. Scientific Reports, 2016, 6, 34715.	3.3	21
32	Inhibition of NLRP3 inflammasome by glibenclamide attenuated dopaminergic neurodegeneration and motor deficits in paraquat and maneb-induced mouse Parkinson's disease model. Toxicology Letters, 2021, 349, 1-11.	0.8	20
33	Glibenclamide attenuates 2,5-hexanedione-induced neurotoxicity in the spinal cord of rats through mitigation of NLRP3 inflammasome activation, neuroinflammation and oxidative stress. Toxicology Letters, 2020, 331, 152-158.	0.8	18
34	Microglial Activation Mediates Noradrenergic Locus Coeruleus Neurodegeneration via Complement Receptor 3 in a Rotenone-Induced Parkinson's Disease Mouse Model. Journal of Inflammation Research, 2021, Volume 14, 1341-1356.	3.5	17
35	Carboxyl-terminus of Hsc70 interacting protein mediates 2,5-hexanedione-induced neurofilament medium chain degradation. Biochemical Pharmacology, 2011, 81, 793-799.	4.4	14
36	NMDA Receptor Antagonist MK801 Protects Against 1-Bromopropane-Induced Cognitive Dysfunction. Neuroscience Bulletin, 2019, 35, 347-361.	2.9	11

QINGSHAN WANG

#	Article	IF	CITATIONS
37	Physiological Concentration of Prostaglandin E2 Exerts Anti-inflammatory Effects by Inhibiting Microglial Production of Superoxide Through a Novel Pathway. Molecular Neurobiology, 2018, 55, 8001-8013.	4.0	10
38	Allyl Sulfide Counteracts 1-Bromopropane-Induced Neurotoxicity by Inhibiting Neuroinflammation and Oxidative Stress. Toxicological Sciences, 2019, 167, 397-407.	3.1	9
39	2,5-hexanedione induces NLRP3 inflammasome activation and neurotoxicity through NADPH oxidase-dependent pathway. Free Radical Biology and Medicine, 2021, 162, 561-570.	2.9	9
40	A novel synthetic peptide SVHRSP attenuates dopaminergic neurodegeneration by inhibiting NADPH oxidase-mediated neuroinflammation in experimental models of Parkinson's disease. Free Radical Biology and Medicine, 2022, 188, 363-374.	2.9	9
41	The reversibility of neurofilaments decline induced by 2,5-hexanedione in rat nerve tissues. Biochemical Pharmacology, 2008, 75, 737-744.	4.4	8
42	Bone marrow mesenchymal stem cells protect against n-hexane-induced neuropathy through beclin 1-independent inhibition of autophagy. Scientific Reports, 2018, 8, 4516.	3.3	8
43	Alterations in neurofilaments content and calpains activity of sciatic nerve of carbon disulfide-treated rats. Archives of Toxicology, 2009, 83, 587-594.	4.2	7
44	NLRP3 inflammasome mediates 2,5-hexanedione-induced neurotoxicity through regulation of macrophage infiltration in rats. Chemico-Biological Interactions, 2020, 330, 109232.	4.0	7
45	Clinical Efficacy and Safety of Lacosamide as an Adjunctive Treatment in Adults With Refractory Epilepsy. Frontiers in Neurology, 2021, 12, 712717.	2.4	5
46	Fertility intentions among the working population of Dalian City born between 1980 and 1989. Journal of Biosocial Science, 2021, , 1-12.	1.2	4
47	The machanism of neuroinflammation in Parkinson's disease: the involvement of integrin. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-1-125.	0.0	0