
Yolanda Aguilera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6570477/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phytochemicals from the Cocoa Shell Modulate Mitochondrial Function, Lipid and Glucose Metabolism in Hepatocytes via Activation of FGF21/ERK, AKT, and mTOR Pathways. Antioxidants, 2022, 11, 136.	5.1	14
2	Activating Effects of the Bioactive Compounds From Coffee By-Products on FGF21 Signaling Modulate Hepatic Mitochondrial Bioenergetics and Energy Metabolism in vitro. Frontiers in Nutrition, 2022, 9, 866233.	3.7	11
3	Phytochemicals: Dietary Sources, Innovative Extraction, and Health Benefits. Foods, 2022, 11, 72.	4.3	7
4	Gastrointestinal Digestion and Absorption of Antioxidant Phenolic Compounds and Caffeine from the Coffee Pulp under Simulated Conditions. , 2022, 12, .		0
5	Extruded coffee parchment shows enhanced antioxidant, hypoglycaemic, and hypolipidemic properties by releasing phenolic compounds from the fibre matrix. Food and Function, 2021, 12, 1097-1110.	4.6	26
6	Investigating edible insects as a sustainable food source: nutritional value and techno-functional and physiological properties. Food and Function, 2021, 12, 6309-6322.	4.6	12
7	Revalorization of Coffee Husk: Modeling and Optimizing the Green Sustainable Extraction of Phenolic Compounds. Foods, 2021, 10, 653.	4.3	33
8	Phytochemicals from Cocoa Shell Protect Mitochondrial Function and Alleviate Oxidative Stress in Hepatocytes via Regulation of ERK and PI3K-AKT Pathways. Medical Sciences Forum, 2021, 2, .	0.5	1
9	Extraction of phenolic compounds from cocoa shell: Modeling using response surface methodology and artificial neural networks. Separation and Purification Technology, 2021, 270, 118779.	7.9	50
10	Critical Evaluation of Coffee Pulp as an Innovative Antioxidant Dietary Fiber Ingredient: Nutritional Value, Functional Properties, and Acute and Sub-Chronic Toxicity. Proceedings (mdpi), 2021, 70, 65.	0.2	10
11	Evaluation of the Hypolipidemic Properties of Cocoa Shell after Simulated Digestion Using In Vitro Techniques and a Cell Culture Model of Non-Alcoholic Fatty Liver Disease. Proceedings (mdpi), 2021, 70, 58.	0.2	2
12	Hypolipidemic Properties of Cocoa and Coffee By-Products after Simulated Gastrointestinal Digestion: A Comparative Approach. Biology and Life Sciences Forum, 2021, 7, 1.	0.6	0
13	Comparative Investigation on Coffee Cascara from Dry and Wet Methods: Chemical and Functional Properties. , 2021, 6, .		2
14	Simulated gastrointestinal digestion influences the in vitro hypolipidemic properties of coffee pulp, a potential ingredient for the prevention of non-alcoholic fatty liver disease. , 2020, , .		2
15	Fibroblast Growth Factor 21 Signaling Activation by Selected Bioactive Compounds from Cocoa Shell Modulated Metabolism and Mitochondrial Function in Hepatocytes. Current Developments in Nutrition, 2020, 4, nzaa045_092.	0.3	3
16	Validation of Cocoa Shell as a Novel Antioxidant Dietary Fiber Food Ingredient: Nutritional Value, Functional Properties, and Safety. Current Developments in Nutrition, 2020, 4, nzaa052_042.	0.3	6
17	Bioavailability of Melatonin from Lentil Sprouts and Its Role in the Plasmatic Antioxidant Status in Rats. Foods, 2020, 9, 330.	4.3	29
18	Maternal Antioxidant Status in Early Pregnancy and Development of Fetal Complications in Twin Pregnancies: A Pilot Study. Antioxidants, 2020, 9, 269.	5.1	10

Yolanda Aguilera

#	Article	IF	CITATIONS
19	Bioaccessibility of Phenolic Compounds from Cocoa Shell Subjected to In Vitro Digestion and Its Antioxidant Activity in Intestinal and Hepatic Cells. Medical Sciences Forum, 2020, 2, .	0.5	2
20	Assessment of the Nutritional Value, Techno-Functional, and In Vitro Physiological Properties of Six Edible Insects. Proceedings (mdpi), 2020, 70, .	0.2	0
21	Relationship of the Phytochemicals from Coffee and Cocoa By-Products with their Potential to Modulate Biomarkers of Metabolic Syndrome In Vitro. Antioxidants, 2019, 8, 279.	5.1	44
22	Phenolic compounds from coffee by-products modulate adipogenesis-related inflammation, mitochondrial dysfunction, and insulin resistance in adipocytes, via insulin/PI3K/AKT signaling pathways. Food and Chemical Toxicology, 2019, 132, 110672.	3.6	71
23	Response surface methodology to optimise the heat-assisted aqueous extraction of phenolic compounds from coffee parchment and their comprehensive analysis. Food and Function, 2019, 10, 4739-4750.	4.6	30
24	Inhibition of the Maillard Reaction by Phytochemicals Composing an Aqueous Coffee Silverskin Extract via a Mixed Mechanism of Action. Foods, 2019, 8, 438.	4.3	28
25	Cocoa Shell Aqueous Phenolic Extract Preserves Mitochondrial Function and Insulin Sensitivity by Attenuating Inflammation between Macrophages and Adipocytes In Vitro. Molecular Nutrition and Food Research, 2019, 63, e1801413.	3.3	34
26	Coffee parchment as a new dietary fiber ingredient: Functional and physiological characterization. Food Research International, 2019, 122, 105-113.	6.2	87
27	Teas and herbal infusions as sources of melatonin and other bioactive non-nutrient components. LWT - Food Science and Technology, 2018, 89, 65-73.	5.2	36
28	Breads fortified with wholegrain cereals and seeds as source of antioxidant dietary fibre and other bioactive compounds. Journal of Cereal Science, 2018, 82, 113-120.	3.7	28
29	Physicochemical properties and in vitro antidiabetic potential of fibre concentrates from onion by-products. Journal of Functional Foods, 2017, 36, 34-42.	3.4	47
30	Maternal plasma antioxidant status in the first trimester of pregnancy and development of obstetric complications. Placenta, 2016, 47, 37-45.	1.5	44
31	Black bean coats: New source of anthocyanins stabilized by β-cyclodextrin copigmentation in a sport beverage. Food Chemistry, 2016, 212, 561-570.	8.2	62
32	Intake of bean sprouts influences melatonin and antioxidant capacity biomarker levels in rats. Food and Function, 2016, 7, 1438-1445.	4.6	31
33	Impact of cooking and germination on phenolic composition and dietary fibre fractions in dark beans (Phaseolus vulgaris L.) and lentils (Lens culinaris L.). LWT - Food Science and Technology, 2016, 66, 72-78.	5.2	128
34	Phenolic compounds in fruits and beverages consumed as part of the mediterranean diet: their role in prevention of chronic diseases. Phytochemistry Reviews, 2016, 15, 405-423.	6.5	101
35	Industrial processing of condiments and seasonings and its implications for micronutrient fortification. Annals of the New York Academy of Sciences, 2015, 1357, 8-28.	3.8	14
36	Fetal undernutrition is associated with perinatal sex-dependent alterations in oxidative status. Journal of Nutritional Biochemistry, 2015, 26, 1650-1659.	4.2	47

Yolanda Aguilera

#	Article	IF	CITATIONS
37	Impact of Melatonin Enrichment during Germination of Legumes on Bioactive Compounds and Antioxidant Activity. Journal of Agricultural and Food Chemistry, 2015, 63, 7967-7974.	5.2	38
38	Estimation of scavenging capacity of melatonin and other antioxidants: Contribution and evaluation in germinated seeds. Food Chemistry, 2015, 170, 203-211.	8.2	55
39	Effect of Illumination on the Content of Melatonin, Phenolic Compounds, and Antioxidant Activity During Germination of Lentils (<i>Lens culinaris</i> L.) and Kidney Beans (<i>Phaseolus vulgaris</i>) Tj ETQq1 1	0.7824314	⊦rg ₿₮ /Over
40	The Impact of Pasteurisation and Sterilisation on Bioactive Compounds of Onion By-products. Food and Bioprocess Technology, 2013, 6, 1979-1989.	4.7	27
41	Changes in Nonnutritional Factors and Antioxidant Activity during Germination of Nonconventional Legumes. Journal of Agricultural and Food Chemistry, 2013, 61, 8120-8125.	5.2	79
42	Impact of germination on starch, dietary fiber and physicochemical properties in non-conventional legumes. Food Research International, 2013, 50, 64-69.	6.2	110
43	Onion (Allium cepa L.) by-products as source of dietary fiber: physicochemical properties and effect on serum lipid levels in high-fat fed rats. European Food Research and Technology, 2012, 234, 617-625.	3.3	23
44	Bioactive phenolic compounds and functional properties of dehydrated bean flours. Food Research International, 2011, 44, 774-780.	6.2	104
45	Characterization of Industrial Onion Wastes (Allium cepa L.): Dietary Fibre and Bioactive Compounds. Plant Foods for Human Nutrition, 2011, 66, 48-57.	3.2	228
46	Phenolic Profile and Antioxidant Capacity of Chickpeas (Cicer arietinum L.) as Affected by a Dehydration Process. Plant Foods for Human Nutrition, 2011, 66, 187-195.	3.2	56
47	Influence of Dehydration Process in Castellano Chickpea: Changes in Bioactive Carbohydrates and Functional Properties. Plant Foods for Human Nutrition, 2011, 66, 391-400.	3.2	15
48	Effect of sterilisation on dietary fibre and physicochemical properties of onion by-products. Food Chemistry, 2011, 127, 501-507.	8.2	68
49	Evaluation of Phenolic Profile and Antioxidant Properties of Pardina Lentil As Affected by Industrial Dehydration. Journal of Agricultural and Food Chemistry, 2010, 58, 10101-10108.	5.2	77
50	The impact of dehydration process on antinutrients and protein digestibility of some legume flours. Food Chemistry, 2009, 114, 1063-1068.	8.2	141
51	Changes in carbohydrate fraction during dehydration process of common legumes. Journal of Food Composition and Analysis, 2009, 22, 678-683.	3.9	73
52	Starch, Functional Properties, and Microstructural Characteristics in Chickpea and Lentil As Affected by Thermal Processing. Journal of Agricultural and Food Chemistry, 2009, 57, 10682-10688.	5.2	128
53	Influence of germination on the soluble carbohydrates and dietary fibre fractions in non-conventional legumes. Food Chemistry, 2008, 107, 1045-1052.	8.2	75
54	Effect of Industrial Dehydration on the Soluble Carbohydrates and Dietary Fiber Fractions in Legumes. Journal of Agricultural and Food Chemistry, 2006, 54, 7652-7657.	5.2	51

#	Article	IF	CITATIONS
55	Regulation of lipid and glucose metabolism in hepatocytes by phytochemicals from coffee by-products and prevention of non-alcoholic fatty liver disease in vitro . , 0, , .		2