## Yolanda Aguilera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6570477/publications.pdf

Version: 2024-02-01

172443 197805 2,450 55 29 49 citations g-index h-index papers 56 56 56 2945 docs citations times ranked citing authors all docs

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Characterization of Industrial Onion Wastes (Allium cepa L.): Dietary Fibre and Bioactive Compounds. Plant Foods for Human Nutrition, 2011, 66, 48-57.                                                                                            | 3.2 | 228       |
| 2  | The impact of dehydration process on antinutrients and protein digestibility of some legume flours. Food Chemistry, 2009, 114, 1063-1068.                                                                                                         | 8.2 | 141       |
| 3  | Starch, Functional Properties, and Microstructural Characteristics in Chickpea and Lentil As Affected by Thermal Processing. Journal of Agricultural and Food Chemistry, 2009, 57, 10682-10688.                                                   | 5.2 | 128       |
| 4  | Impact of cooking and germination on phenolic composition and dietary fibre fractions in dark beans (Phaseolus vulgaris L.) and lentils (Lens culinaris L.). LWT - Food Science and Technology, 2016, 66, 72-78.                                  | 5.2 | 128       |
| 5  | Impact of germination on starch, dietary fiber and physicochemical properties in non-conventional legumes. Food Research International, 2013, 50, 64-69.                                                                                          | 6.2 | 110       |
| 6  | Bioactive phenolic compounds and functional properties of dehydrated bean flours. Food Research International, 2011, 44, 774-780.                                                                                                                 | 6.2 | 104       |
| 7  | Phenolic compounds in fruits and beverages consumed as part of the mediterranean diet: their role in prevention of chronic diseases. Phytochemistry Reviews, 2016, 15, 405-423.                                                                   | 6.5 | 101       |
| 8  | Coffee parchment as a new dietary fiber ingredient: Functional and physiological characterization. Food Research International, 2019, 122, 105-113.                                                                                               | 6.2 | 87        |
| 9  | Changes in Nonnutritional Factors and Antioxidant Activity during Germination of Nonconventional Legumes. Journal of Agricultural and Food Chemistry, 2013, 61, 8120-8125.                                                                        | 5.2 | 79        |
| 10 | Evaluation of Phenolic Profile and Antioxidant Properties of Pardina Lentil As Affected by Industrial Dehydration. Journal of Agricultural and Food Chemistry, 2010, 58, 10101-10108.                                                             | 5.2 | 77        |
| 11 | Influence of germination on the soluble carbohydrates and dietary fibre fractions in non-conventional legumes. Food Chemistry, 2008, 107, 1045-1052.                                                                                              | 8.2 | 75        |
| 12 | Changes in carbohydrate fraction during dehydration process of common legumes. Journal of Food Composition and Analysis, 2009, 22, 678-683.                                                                                                       | 3.9 | 73        |
| 13 | Phenolic compounds from coffee by-products modulate adipogenesis-related inflammation, mitochondrial dysfunction, and insulin resistance in adipocytes, via insulin/PI3K/AKT signaling pathways. Food and Chemical Toxicology, 2019, 132, 110672. | 3.6 | 71        |
| 14 | Effect of sterilisation on dietary fibre and physicochemical properties of onion by-products. Food Chemistry, 2011, 127, 501-507.                                                                                                                 | 8.2 | 68        |
| 15 | Black bean coats: New source of anthocyanins stabilized by $\hat{l}^2$ -cyclodextrin copigmentation in a sport beverage. Food Chemistry, 2016, 212, 561-570.                                                                                      | 8.2 | 62        |
| 16 | Phenolic Profile and Antioxidant Capacity of Chickpeas (Cicer arietinum L.) as Affected by a Dehydration Process. Plant Foods for Human Nutrition, 2011, 66, 187-195.                                                                             | 3.2 | 56        |
| 17 | Estimation of scavenging capacity of melatonin and other antioxidants: Contribution and evaluation in germinated seeds. Food Chemistry, 2015, 170, 203-211.                                                                                       | 8.2 | 55        |
| 18 | Effect of Industrial Dehydration on the Soluble Carbohydrates and Dietary Fiber Fractions in Legumes. Journal of Agricultural and Food Chemistry, 2006, 54, 7652-7657.                                                                            | 5.2 | 51        |

| #  | Article                                                                                                                                                                                                                           | IF                  | CITATIONS       |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------|
| 19 | Extraction of phenolic compounds from cocoa shell: Modeling using response surface methodology and artificial neural networks. Separation and Purification Technology, 2021, 270, 118779.                                         | 7.9                 | 50              |
| 20 | Effect of Illumination on the Content of Melatonin, Phenolic Compounds, and Antioxidant Activity During Germination of Lentils ( <i>Lens culinaris</i> L.) and Kidney Beans ( <i>Phaseolus vulgaris</i> ) Tj ETQq0 0              | 0 r <b>g,B</b> T /0 | verkæck 10 Tf 5 |
| 21 | Fetal undernutrition is associated with perinatal sex-dependent alterations in oxidative status. Journal of Nutritional Biochemistry, 2015, 26, 1650-1659.                                                                        | 4.2                 | 47              |
| 22 | Physicochemical properties and in vitro antidiabetic potential of fibre concentrates from onion by-products. Journal of Functional Foods, 2017, 36, 34-42.                                                                        | 3.4                 | 47              |
| 23 | Maternal plasma antioxidant status in the first trimester of pregnancy and development of obstetric complications. Placenta, 2016, 47, 37-45.                                                                                     | 1.5                 | 44              |
| 24 | Relationship of the Phytochemicals from Coffee and Cocoa By-Products with their Potential to Modulate Biomarkers of Metabolic Syndrome In Vitro. Antioxidants, 2019, 8, 279.                                                      | 5.1                 | 44              |
| 25 | Impact of Melatonin Enrichment during Germination of Legumes on Bioactive Compounds and Antioxidant Activity. Journal of Agricultural and Food Chemistry, 2015, 63, 7967-7974.                                                    | 5 <b>.</b> 2        | 38              |
| 26 | Teas and herbal infusions as sources of melatonin and other bioactive non-nutrient components. LWT - Food Science and Technology, 2018, 89, 65-73.                                                                                | <b>5.</b> 2         | 36              |
| 27 | Cocoa Shell Aqueous Phenolic Extract Preserves Mitochondrial Function and Insulin Sensitivity by Attenuating Inflammation between Macrophages and Adipocytes In Vitro. Molecular Nutrition and Food Research, 2019, 63, e1801413. | 3.3                 | 34              |
| 28 | Revalorization of Coffee Husk: Modeling and Optimizing the Green Sustainable Extraction of Phenolic Compounds. Foods, 2021, 10, 653.                                                                                              | 4.3                 | 33              |
| 29 | Intake of bean sprouts influences melatonin and antioxidant capacity biomarker levels in rats. Food and Function, 2016, 7, 1438-1445.                                                                                             | 4.6                 | 31              |
| 30 | Response surface methodology to optimise the heat-assisted aqueous extraction of phenolic compounds from coffee parchment and their comprehensive analysis. Food and Function, 2019, 10, 4739-4750.                               | 4.6                 | 30              |
| 31 | Bioavailability of Melatonin from Lentil Sprouts and Its Role in the Plasmatic Antioxidant Status in Rats. Foods, 2020, 9, 330.                                                                                                   | 4.3                 | 29              |
| 32 | Breads fortified with wholegrain cereals and seeds as source of antioxidant dietary fibre and other bioactive compounds. Journal of Cereal Science, 2018, 82, 113-120.                                                            | 3.7                 | 28              |
| 33 | Inhibition of the Maillard Reaction by Phytochemicals Composing an Aqueous Coffee Silverskin Extract via a Mixed Mechanism of Action. Foods, 2019, 8, 438.                                                                        | 4.3                 | 28              |
| 34 | The Impact of Pasteurisation and Sterilisation on Bioactive Compounds of Onion By-products. Food and Bioprocess Technology, 2013, 6, 1979-1989.                                                                                   | 4.7                 | 27              |
| 35 | Extruded coffee parchment shows enhanced antioxidant, hypoglycaemic, and hypolipidemic properties by releasing phenolic compounds from the fibre matrix. Food and Function, 2021, 12, 1097-1110.                                  | 4.6                 | 26              |
| 36 | Onion (Allium cepa L.) by-products as source of dietary fiber: physicochemical properties and effect on serum lipid levels in high-fat fed rats. European Food Research and Technology, 2012, 234, 617-625.                       | 3.3                 | 23              |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Influence of Dehydration Process in Castellano Chickpea: Changes in Bioactive Carbohydrates and Functional Properties. Plant Foods for Human Nutrition, 2011, 66, 391-400.                                                 | 3.2 | 15        |
| 38 | Industrial processing of condiments and seasonings and its implications for micronutrient fortification. Annals of the New York Academy of Sciences, 2015, 1357, 8-28.                                                     | 3.8 | 14        |
| 39 | Phytochemicals from the Cocoa Shell Modulate Mitochondrial Function, Lipid and Glucose<br>Metabolism in Hepatocytes via Activation of FGF21/ERK, AKT, and mTOR Pathways. Antioxidants, 2022, 11,<br>136.                   | 5.1 | 14        |
| 40 | Investigating edible insects as a sustainable food source: nutritional value and techno-functional and physiological properties. Food and Function, 2021, 12, 6309-6322.                                                   | 4.6 | 12        |
| 41 | Activating Effects of the Bioactive Compounds From Coffee By-Products on FGF21 Signaling Modulate Hepatic Mitochondrial Bioenergetics and Energy Metabolism in vitro. Frontiers in Nutrition, 2022, 9, 866233.             | 3.7 | 11        |
| 42 | Maternal Antioxidant Status in Early Pregnancy and Development of Fetal Complications in Twin Pregnancies: A Pilot Study. Antioxidants, 2020, 9, 269.                                                                      | 5.1 | 10        |
| 43 | Critical Evaluation of Coffee Pulp as an Innovative Antioxidant Dietary Fiber Ingredient: Nutritional Value, Functional Properties, and Acute and Sub-Chronic Toxicity. Proceedings (mdpi), 2021, 70, 65.                  | 0.2 | 10        |
| 44 | Phytochemicals: Dietary Sources, Innovative Extraction, and Health Benefits. Foods, 2022, 11, 72.                                                                                                                          | 4.3 | 7         |
| 45 | Validation of Cocoa Shell as a Novel Antioxidant Dietary Fiber Food Ingredient: Nutritional Value, Functional Properties, and Safety. Current Developments in Nutrition, 2020, 4, nzaa052_042.                             | 0.3 | 6         |
| 46 | Fibroblast Growth Factor 21 Signaling Activation by Selected Bioactive Compounds from Cocoa Shell Modulated Metabolism and Mitochondrial Function in Hepatocytes. Current Developments in Nutrition, 2020, 4, nzaa045_092. | 0.3 | 3         |
| 47 | Simulated gastrointestinal digestion influences the <em>in vitro</em> hypolipidemic properties of coffee pulp, a potential ingredient for the prevention of non-alcoholic fatty liver disease. , 2020, , .                 |     | 2         |
| 48 | Regulation of lipid and glucose metabolism in hepatocytes by phytochemicals from coffee by-products and prevention of non-alcoholic fatty liver disease <em>in vitro</em> ., 0,,.                                          |     | 2         |
| 49 | Bioaccessibility of Phenolic Compounds from Cocoa Shell Subjected to In Vitro Digestion and Its Antioxidant Activity in Intestinal and Hepatic Cells. Medical Sciences Forum, 2020, 2, .                                   | 0.5 | 2         |
| 50 | Evaluation of the Hypolipidemic Properties of Cocoa Shell after Simulated Digestion Using In Vitro Techniques and a Cell Culture Model of Non-Alcoholic Fatty Liver Disease. Proceedings (mdpi), 2021, 70, 58.             | 0.2 | 2         |
| 51 | Comparative Investigation on Coffee Cascara from Dry and Wet Methods: Chemical and Functional Properties. , 2021, 6, .                                                                                                     |     | 2         |
| 52 | Phytochemicals from Cocoa Shell Protect Mitochondrial Function and Alleviate Oxidative Stress in Hepatocytes via Regulation of ERK and PI3K-AKT Pathways. Medical Sciences Forum, 2021, 2, .                               | 0.5 | 1         |
| 53 | Assessment of the Nutritional Value, Techno-Functional, and In Vitro Physiological Properties of Six Edible Insects. Proceedings (mdpi), 2020, 70, .                                                                       | 0.2 | 0         |
| 54 | Hypolipidemic Properties of Cocoa and Coffee By-Products after Simulated Gastrointestinal Digestion: A Comparative Approach. Biology and Life Sciences Forum, 2021, 7, 1.                                                  | 0.6 | 0         |

# ARTICLE IF CITATIONS

55 Gastrointestinal Digestion and Absorption of Antioxidant Phenolic Compounds and Caffeine from the Coffee Pulp under Simulated Conditions., 2022, 12,.