Catherine Larochelle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6570381/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How do immune cells overcome the blood–brain barrier in multiple sclerosis?. FEBS Letters, 2011, 585, 3770-3780.	2.8	299
2	Methionine Metabolism Shapes T Helper Cell Responses through Regulation of Epigenetic Reprogramming. Cell Metabolism, 2020, 31, 250-266.e9.	16.2	182
3	Netrin 1 regulates blood–brain barrier function and neuroinflammation. Brain, 2015, 138, 1598-1612.	7.6	141
4	Melanoma cell adhesion molecule identifies encephalitogenic T lymphocytes and promotes their recruitment to the central nervous system. Brain, 2012, 135, 2906-2924.	7.6	128
5	Focal disturbances in the blood–brain barrier are associated with formation of neuroinflammatory lesions. Neurobiology of Disease, 2015, 74, 14-24.	4.4	121
6	Laminin-411 Is a Vascular Ligand for MCAM and Facilitates TH17 Cell Entry into the CNS. PLoS ONE, 2012, 7, e40443.	2.5	113
7	IL-17 and related cytokines involved in the pathology and immunotherapy of multiple sclerosis: Current and future developments. Cytokine and Growth Factor Reviews, 2014, 25, 403-413.	7.2	107
8	Secondary Progression in Multiple Sclerosis: Neuronal Exhaustion or Distinct Pathology?. Trends in Neurosciences, 2016, 39, 325-339.	8.6	83
9	Dual role of ALCAM in neuroinflammation and blood–brain barrier homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E524-E533.	7.1	77
10	Melanoma cell adhesion molecule–positive <scp>CD</scp> 8 <scp>T</scp> lymphocytes mediate central nervous system inflammation. Annals of Neurology, 2015, 78, 39-53.	5.3	61
11	Immunological and pathological characterization of fatal rebound MS activity following natalizumab withdrawal. Multiple Sclerosis Journal, 2017, 23, 72-81.	3.0	51
12	CD70 defines a subset of proinflammatory and CNS-pathogenic TH1/TH17 lymphocytes and is overexpressed in multiple sclerosis. Cellular and Molecular Immunology, 2019, 16, 652-665.	10.5	49
13	ICAM1+ neutrophils promote chronic inflammation via ASPRV1 in B cell–dependent autoimmune encephalomyelitis. JCI Insight, 2017, 2, .	5.0	48
14	JAML mediates monocyte and CD8 T cell migration across the brain endothelium. Annals of Clinical and Translational Neurology, 2015, 2, 1032-1037.	3.7	37
15	Thrombotic thrombocytopenic purpura-hemolytic uremic syndrome in relapsing-remitting multiple sclerosis patients on high-dose interferon β. Multiple Sclerosis Journal, 2014, 20, 1783-1787.	3.0	34
16	EGFL7 reduces CNS inflammation in mouse. Nature Communications, 2018, 9, 819.	12.8	33
17	Integrated immunovirological profiling validates plasma SARS-CoV-2 RNA as an early predictor of COVID-19 mortality. Science Advances, 2021, 7, eabj5629.	10.3	32
18	The Biobanque québécoise de la COVID-19 (BQC19)—A cohort to prospectively study the clinical and biological determinants of COVID-19 clinical trajectories. PLoS ONE, 2021, 16, e0245031.	2.5	30

CATHERINE LAROCHELLE

#	Article	IF	CITATIONS
19	Pro-inflammatory T helper 17 directly harms oligodendrocytes in neuroinflammation. Proceedings of the United States of America, 2021, 118, .	7.1	30
20	DICAM promotes T _H 17 lymphocyte trafficking across the blood-brain barrier during autoimmune neuroinflammation. Science Translational Medicine, 2022, 14, eabj0473.	12.4	27
21	EphrinB1 and EphrinB2 regulate T cell chemotaxis and migration in experimental autoimmune encephalomyelitis and multiple sclerosis. Neurobiology of Disease, 2016, 91, 292-306.	4.4	24
22	Identification of SARS-CoV-2–specific immune alterations in acutely ill patients. Journal of Clinical Investigation, 2021, 131, .	8.2	24
23	Increased frequency of proinflammatory CD4 T cells and pathological levels of serum neurofilament light chain in adult drugâ€resistant epilepsy. Epilepsia, 2021, 62, 176-189.	5.1	23
24	Frailty in ageing persons with multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 613-620.	3.0	22
25	Epstein-Barr virus-associated immune reconstitution inflammatory syndrome as possible cause of fulminant multiple sclerosis relapse after natalizumab interruption. Journal of Neuroimmunology, 2018, 319, 9-12.	2.3	21
26	Age-related injury responses of human oligodendrocytes to metabolic insults: link to BCL-2 and autophagy pathways. Communications Biology, 2021, 4, 20.	4.4	17
27	Clearance of intracellular tau protein from neuronal cells via VAMP8-induced secretion. Journal of Biological Chemistry, 2020, 295, 17827-17841.	3.4	17
28	Distinct Function-Related Molecular Profile of Adult Human A2B5-Positive Pre-Oligodendrocytes Versus Mature Oligodendrocytes. Journal of Neuropathology and Experimental Neurology, 2019, 78, 468-479.	1.7	16
29	Association of Latitude and Exposure to Ultraviolet B Radiation With Severity of Multiple Sclerosis. Neurology, 2022, 98, .	1.1	12
30	Diverse injury responses of human oligodendrocyte to mediators implicated in multiple sclerosis. Brain, 2022, 145, 4320-4333.	7.6	9
31	Contact-Dependent Granzyme B-Mediated Cytotoxicity of Th17-Polarized Cells Toward Human Oligodendrocytes. Frontiers in Immunology, 2022, 13, 850616.	4.8	7
32	Stress Signal ULBP4, an NKG2D Ligand, Is Upregulated in Multiple Sclerosis and Shapes CD8 ⁺ T-Cell Behaviors. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	6.0	6
33	From Baló's concentric sclerosis to multiple sclerosis: a series of 6 patients. Multiple Sclerosis and Related Disorders, 2020, 42, 102078.	2.0	5