Thierry Jaffredo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6570301/publications.pdf

Version: 2024-02-01

331538 302012 1,639 52 21 39 citations h-index g-index papers 65 65 65 2289 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Somite-derived cells replace ventral aortic hemangioblasts and provide aortic smooth muscle cells of the trunk. Development (Cambridge), 2006, 133, 1013-1022.	1.2	147
2	Tracing the Progeny of the Aortic Hemangioblast in the Avian Embryo. Developmental Biology, 2000, 224, 204-214.	0.9	140
3	From hemangioblast to hematopoietic stem cell: An endothelial connection?. Experimental Hematology, 2005, 33, 1029-1040.	0.2	108
4	Dual Role of Melanoma Cell Adhesion Molecule (MCAM)/CD146 in Lymphocyte Endothelium Interaction: MCAM/CD146 Promotes Rolling via Microvilli Induction in Lymphocyte and Is an Endothelial Adhesion Receptor. Journal of Immunology, 2007, 179, 6673-6685.	0.4	102
5	Endothelio-Mesenchymal Interaction Controls runx1 Expression and Modulates the notch Pathway to Initiate Aortic Hematopoiesis. Developmental Cell, 2013, 24, 600-611.	3.1	91
6	The European Hematology Association Roadmap for European Hematology Research: a consensus document. Haematologica, 2016, 101, 115-208.	1.7	67
7	Erythropoiesis from acetyl LDL incorporating endothelial cells at the preliver stage. Blood, 2003, 101, 4733-4738.	0.6	64
8	A Systems Biology Approach for Defining the Molecular Framework of the Hematopoietic Stem Cell Niche. Cell Stem Cell, 2014, 15, 376-391.	5.2	63
9	Tracing the hemangioblast during embryogenesis: developmental relationships between endothelial and hematopoietic cells. International Journal of Developmental Biology, 2005, 49, 269-277.	0.3	59
10	Are Intra-Aortic Hemopoietic Cells Derived from Endothelial Cells During Ontogeny?. Trends in Cardiovascular Medicine, 2006, 16, 128-139.	2.3	52
11	From mesoderm to blood islands: patterns of key molecules during yolk sac erythropoiesis. Gene Expression Patterns, 2003, 3, 261-272.	0.3	50
12	The embryonic origins of hematopoietic stem cells: a tale of hemangioblast and hemogenic endothelium. Apmis, 2005, 113, 790-803.	0.9	44
13	VE-cadherin expression allows identification of a new class of hematopoietic stem cells within human embryonic liver. Blood, 2010, 116, 4444-4455.	0.6	41
14	The quail genome: insights into social behaviour, seasonal biology and infectious disease response. BMC Biology, 2020, 18, 14.	1.7	40
15	Restoration of Runx1 Expression in the Tie2 Cell Compartment Rescues Definitive Hematopoietic Stem Cells and Extends Life of Runx1 Knockout Animals Until Birth. Stem Cells, 2009, 27, 1616-1624.	1.4	36
16	Differential localization of cytoplasmic myosin ii isoforms a and b in avian interphase and dividing embryonic and immortalized cardiomyocytes and other cell types in vitro. Cytoskeleton, 1995, 31, 93-112.	4.4	34
17	Extracellular vesicles of stromal origin target and support hematopoietic stem and progenitor cells. Journal of Cell Biology, 2017, 216, 2217-2230.	2.3	34
18	In vivo generation of haematopoietic stem/progenitor cells from bone marrow-derived haemogenic endothelium. Nature Cell Biology, 2019, 21, 1334-1345.	4.6	34

#	Article	IF	Citations
19	Core binding factor in the early avian embryo: cloning of $Cbfl^2$ and combinatorial expression patterns with Runx1. Gene Expression Patterns, 2005, 6, 29-39.	0.3	33
20	Unexpected contribution of fibroblasts to muscle lineage as a mechanism for limb muscle patterning. Nature Communications, 2021, 12, 3851.	5.8	29
21	Development of the Avian Immune System. , 2014, , 45-63.		28
22	Widespread lipoplex-mediated gene transfer to vascular endothelial cells and hemangioblasts in the vertebrate embryo. Developmental Dynamics, 2006, 235, 105-114.	0.8	24
23	Decoding the Hemogenic Endothelium in Mammals. Cell Stem Cell, 2009, 4, 189-190.	5.2	24
24	Identification of the pre–T-cell receptor α chain in nonmammalian vertebrates challenges the structure–function of the molecule. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19991-19996.	3.3	23
25	Cell interactions and cell signaling during hematopoietic development. Experimental Cell Research, 2014, 329, 200-206.	1.2	18
26	A dileucine motif targets MCAM-l cell adhesion molecule to the basolateral membrane in MDCK cells. FEBS Letters, 2006, 580, 3649-3656.	1.3	17
27	OCâ€116, the chicken ortholog of mammalian MEPE found in eggshell, is also expressed in bone cells. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2010, 314B, 653-662.	0.6	17
28	Endoglin expression level discriminates long-term hematopoietic from short-term clonogenic progenitor cells in the aorta. Haematologica, 2012, 97, 975-979.	1.7	17
29	Dorso-ventral contributions in the formation of the embryonic aorta and the control of aortic hematopoiesis. Blood Cells, Molecules, and Diseases, 2013, 51, 232-238.	0.6	17
30	DEVELOPMENT OF THE AVIAN IMMUNE SYSTEM. , 2008, , 51-V.		15
31	An <i>in vitro</i> model of hemogenic endothelium commitment and hematopoietic production. Development (Cambridge), 2016, 143, 1302-12.	1.2	15
32	The crosstalk between hematopoietic stem cells and their niches. Current Opinion in Hematology, 2018, 25, 285-289.	1.2	15
33	Hemangioblasts and hemopoietic stem cells during ontogeny. Comptes Rendus - Biologies, 2002, 325, 1013-1020.	0.1	14
34	Aortic remodelling during hemogenesis: is the chicken paradigm unique?. International Journal of Developmental Biology, 2010, 54, 1045-1054.	0.3	14
35	Optimal Lipofection Reagent Varies with the Molecular Modifications of the DNA. Oligonucleotides, 1998, 8, 427-434.	4.4	13
36	How the avian model has pioneered the field of hematopoietic development. Experimental Hematology, 2014, 42, 661-668.	0.2	12

#	Article	IF	CITATIONS
37	Generation of Small Fusion Genes Carrying Phleomycin Resistance andDrosophilaAlcohol Dehydrogenase Reporter Properties: Their Application in Retroviral Vectors. Experimental Cell Research, 1996, 224, 291-301.	1.2	11
38	The $TGF\hat{l}^2$ pathway is a key player for the endothelial-to-hematopoietic transition in the embryonic aorta. Developmental Biology, 2018, 434, 292-303.	0.9	11
39	Inferring Gene Networks in Bone Marrow Hematopoietic Stem Cell-Supporting Stromal Niche Populations. IScience, 2020, 23, 101222.	1.9	11
40	Hematopoietic progenitors polarize in contact with bone marrow stromal cells in response to SDF1. Journal of Cell Biology, 2021, 220, .	2.3	8
41	Avian HSC emergence, migration, and commitment toward the T cell lineage. FEMS Immunology and Medical Microbiology, 2003, 39, 205-212.	2.7	6
42	Adaptive dynamics of hematopoietic stem cells and their supporting stroma: a model and mathematical analysis. Mathematical Biosciences and Engineering, 2019, 16, 4818-4845.	1.0	6
43	Filiation entre cellules endothéliales et cellules souches hématopoïétiques intraembryonnaires. Société De Biologie Journal, 1999, 193, 165-170.	0.3	3
44	Developmental Hematopoiesis - Preface. International Journal of Developmental Biology, 2010, 54, 947-949.	0.3	3
45	Developmental hematopoiesis: historical background and perspectives. An interview with Nicole Le Douarin. International Journal of Developmental Biology, 2010, 54, 951-954.	0.3	2
46	Roles of Exosomes in the Hematopoietic Stem Cell-Supporting Capacity of Stromal Cells. Blood, 2015, 126, 1193-1193.	0.6	2
47	Development of the avian hematopoietic and immune systems. , 2022, , 45-69.		2
48	CD117hi expression identifies a human fetal hematopoietic stem cell population with high proliferation and self-renewal potential. Haematologica, 2020, 105, e43-e47.	1.7	1
49	The EHA Research Roadmap: Normal Hematopoiesis. HemaSphere, 2021, 5, e669.	1.2	1
50	The quest for hematopoietic stem cells in the embryo. An interview with Franoise Dieterlen-Livre. International Journal of Developmental Biology, 2010, 54, 1075-1078.	0.3	0
51	Extra- and Intraembryonic HSC Commitment in the Avian Model. , 2006, , 32-45.		O
52	Intra-Aortic Hematopoietic Cells. , 2012, , 59-75.		O